
DEC 5 - 9, 2021 San Francisco, California

PAVFuzz: State-Sensitive Fuzz Testing of Protocols in
Autonomous Vehicles

Feilong Zuo, Zhengxiong Luo, Junze Yu, Zhe Liu, Yu Jiang
zuofl19@mails.tsinghua.edu.cn

Security In Vehicular Network Systems
In July 2015, Charlie Miller and Chris Valasek
once successfully injected into a Jeep Cherokee
Car with the Uconnect System via the access of
remote network .

They took over the right of the entertainment
system, the power system, etc, while the
driver sitting in the car could not give any
effective orders.

It is urgently needed to guarantee the security of in-vehicle network!
2

Network Protocols Used in Autonomous Vehicles

3

A sample protocol stack in Ethernet-based autonomous vehicles:
p Physical Layer: 100BASE-T1 Ethernet
p Link Layer: MAC, VLAN
p IP Layer: IP protocols, including IPv4, IPv6
p Transport Layer: TCP/UDP protocols
p Application Layer: SOME/IP, RTPS, ZeroMQ ...

Generation-based Fuzz Testing of Protocols

4

Fig. Workflow of generation-based fuzzing strategies.

p Fuzzers usually produce large number of mutated inputs to the SUT to find potential bugs

p Generation-based fuzzers are more suitable for fuzzing protocols due to the highly structured packets

p For each data model, they randomly selected several data elements and mutate them

Motivation

5

Fig. Sample relations between data elements in different RTPS states.

p Version -> Version, GUID Prefix -> GUID Prefix
l Their values should keep the same between states
l Otherwise, the under-test protocol will directly reject the following packet due to the inconsistence

Relations between protocol states: RTPS as an example

Motivation

6

Fig. Sample relations between data elements in different RTPS states.

p Version -> Version, GUID Prefix -> GUID Prefix
l Their values should keep the same between states
l Otherwise, the under-test protocol will directly reject the following packet due to the inconsistence

p Topic, Type, Max Size -> Data Payload
l These previous elements describe how the following elements are processed by protocol
l The mutation probability of the following elements should be increased if the previous ones change

Relations between protocol states: RTPS as an example

Motivation

7

Fig. Sample relations between data elements in different RTPS states.

p Version -> Version, GUID Prefix -> GUID Prefix
l Their values should keep the same between states
l Otherwise, the under-test protocol will directly reject the following packet due to the inconsistence

p Topic, Type, Max Size -> Data Payload
l These previous elements describe how the following elements are processed by protocol
l The mutation probability of the following elements should be increased if the previous ones change

p Other Complex Relations in Protocols

Relations between protocol states: RTPS as an example

8

Motivation
Traditional protocol fuzzing strategies: unable to learn and
leverage these relations

Fig. Basic template packet structure employed by RTPS protocol.

p Complex structure with many specific data elements

p Without relations, only able to randomly select several elements to mutate in each state

p Low fuzzing efficiency and poor effectiveness

9

Overview of PAVFuzz
Protocol

Under Test

Data
Models

XML
Data

Model

XML Choose

p PAVFuzz starts with user-provided data
models of the under-test protocol

10

Overview of PAVFuzz
Protocol

Under Test

Data
Models

XML
Data

Model

XML Choose

State-sensitive
Mutation Relation Table

New Input

p PAVFuzz starts with user-provided data
models of the under-test protocol

p For each model, instead of random
mutation, it performs state-sensitive
mutation over data elements according
to the global relation table.

11

Overview of PAVFuzz
Protocol

Under Test

Data
Models

XML
Data

Model

XML Choose

State-sensitive
Mutation Relation Table

Execution In EUTNew Input

Bug Report

p PAVFuzz starts with user-provided data
models of the under-test protocol

p For each model, instead of random
mutation, it performs state-sensitive
mutation over data elements according
to the global relation table.

p Each generated new input is injected to
the endpoint and PAVFuzz monitors the
execution to find potential bugs.

12

Overview of PAVFuzz
Protocol

Under Test

Data
Models

XML
Data

Model

XML Choose

State-sensitive
Mutation Relation Table

Execution In EUT Coverage
Collection

Relation
Learning

New Input

Next Data Model

Bug Report

p PAVFuzz starts with user-provided data
models of the under-test protocol

p For each model, instead of random
mutation, it performs state-sensitive
mutation over data elements according
to the global relation table.

p Each generated new input is injected to
the endpoint and PAVFuzz monitors the
execution to find potential bugs.

p PAVFuzz collects coverage information for
each input and updates the relation table
in the relation learning part.

13

Relation Table

Fig. Structure of each basic cell in the Relation Table.

Element_ID_P Element_ID Value

Model_Name Element_Name Model_Name Element_Name

14

Relation Table

Fig. Structure of each basic cell in the Relation Table.

Element_ID Value

Model_Name Element_Name Model_Name Element_Name

Element_ID_P

SEDP Topic PUB Payload 66Example.

p Element_ID_P: the ID of data element in the previous state
p An element id consists of model name and element name to guarantee the uniqueness

15

Relation Table

Fig. Structure of each basic cell in the Relation Table.

Value

Model_Name Element_Name Model_Name Element_Name

Element_ID_P Element_ID

SEDP Topic PUB Payload 66Example.

p Element_ID: the ID of data element in the successive state
p State SPDP --> State SEDP --> State PUB

16

Relation Table

Fig. Structure of each basic cell in the Relation Table.

Model_Name Element_Name Model_Name Element_Name

Element_ID_P Element_ID Value

SEDP Topic PUB PayloadExample.

p Value: temp value to measure the relation between these two data elements
p Dynamically maintained and updated by PAVFuzz

66

17

Relation Learning: To Construct the Relation Table

𝐷
XML

Packet
𝑒𝑙𝑒𝑚1

𝑒𝑙𝑒𝑚2

𝑒𝑙𝑒𝑚3

𝑒𝑙𝑒𝑚4
…+

𝑒𝑙𝑒𝑚1
𝑒𝑙𝑒𝑚3

Element
Pruning

𝐷
XML

𝑚+ 𝑒𝑙𝑒𝑚

𝑆!"

𝑆𝑡𝑎𝑡𝑒#
p Triggered when a packet with mutated

elements touches new code coverage
p Element pruning to get the minimum set 𝑆!"
p Generate packet 𝑚 for each 𝑒𝑙𝑒𝑚 in 𝑆!"

𝑆!"

18

Relation Learning: To Construct the Relation Table

𝐷′
XML

𝑆𝑡𝑎𝑡𝑒$

𝑒𝑙𝑒𝑚′1

𝑒𝑙𝑒𝑚′2

𝑒𝑙𝑒𝑚′3

𝑒𝑙𝑒𝑚′4
…

Interesting
Seeds Pool

𝑆′!"

𝑒𝑙𝑒𝑚′

𝑚′𝑚′𝑚′ 𝑚′ 𝑚′ …

p Triggered when a packet with mutated
elements touches new code coverage

p Element pruning to get the minimum set 𝑆!"
p Generate packet 𝑚 for each 𝑒𝑙𝑒𝑚 in 𝑆!"
p Refer to the successive state 𝐵 to pick the

set of 𝑚′ for each 𝑒𝑙𝑒𝑚’ from the seeds pool

19

Relation Learning: To Construct the Relation Table

𝑚 +

𝑆𝑡𝑎𝑡𝑒#
𝐷

𝑒𝑙𝑒𝑚

𝑚′

𝑆𝑡𝑎𝑡𝑒$
𝐷′
𝑒𝑙𝑒𝑚′

𝑆𝑒𝑞

p Triggered when a packet with mutated
elements touches new code coverage

p Element pruning to get the minimum set 𝑆!"
p Generate packet 𝑚 for each 𝑒𝑙𝑒𝑚 in 𝑆!"
p Refer to the successive state 𝐵 to pick the

set of 𝑚′ for each 𝑒𝑙𝑒𝑚’ from the seeds pool
p Combine each pair of 𝑚 and 𝑚′ into new

packet sequences 𝑠𝑒𝑞 < 𝑚,𝑚′ >

𝑇% < 𝑒𝑙𝑒𝑚, 𝑒𝑙𝑒𝑚& > 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑤ℎ𝑒𝑛 𝑎 𝑠𝑒𝑞 < 𝑚,𝑚& > 𝑐𝑜𝑣𝑒𝑟𝑒𝑠 𝑛𝑒𝑤 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

𝑆𝑒𝑞

20

State-Sensitive Mutation: Leveraging the Relations

∀𝑒𝑙𝑒𝑚 ∈ 𝑆!", 𝑊#$#%= ∑#$#%) 𝑇& < 𝑒𝑙𝑒𝑚', 𝑒𝑙𝑒𝑚 >, 𝑒𝑙𝑒𝑚' 𝜖 𝑆!"_'

𝐷'
XML 𝑒𝑙𝑒𝑚!1

𝑒𝑙𝑒𝑚!2

𝑒𝑙𝑒𝑚!3

𝑒𝑙𝑒𝑚!4
…𝑚' +

𝐷
XML 𝑒𝑙𝑒𝑚1

𝑒𝑙𝑒𝑚2

𝑒𝑙𝑒𝑚3

𝑒𝑙𝑒𝑚4
…

p Instead of randomly choosing elements to mutate, it calculates the different mutation
weight 𝑊()(* for each data element in current state to smartly recognize the key ones.

𝑆!"

𝑆!"_'

21

Experiment Setup
Research Questions

p R1: Is PAVFuzz more efficient in fuzzing protocols used in autonomous
vehicles than start-of-the-art fuzzers?

p R2: Can PAVFuzz effectively expose previously unknown vulnerabilities
in those widely used protocols in autonomous vehicles?

22

Experiment Setup
Selected Protocols Used in Autonomous Vehicles
p RTPS – Real-time Publish Subscribe Protocol

p SOME/IP – Scalable service-Oriented Middleware over IP

p ZeroMQ

23

Experiment Setup
Selected Protocols Used in Autonomous Vehicles

24

Efficiency of Fuzzing

AFL +369.19% Peach +22.51%

25

Previous Unknown Vulnerabilities

DEC 5 - 9, 2021 San Francisco, California

Thanks for your attention!

