DESIGN
AUTOMATION

FROM CHIPS TO SYSTEMS — LEARN TODAY, CREATE TOMORROW

DEC5-9,2021 4 San Francisco, California

PAVFuzz: State-Sensitive Fuzz Testing of Protocols in
Autonomous Vehicles

Feilong Zuo, Zhengxiong Luo, Junze Yu, Zhe Liu, Yu Jiang

zuofl19@mails.tsinghua.edu.cn

Security In Vehicular Network Systems

In July 2015, Charlie Miller and Chris Valasek
once successfully injected into a Jeep Cherokee
Car with the Uconnect System via the access of
remote network .

They took over the right of the entertainment
system, the power system, etc, while the
driver sitting in the car could not give any
effective orders.

It is urgently needed to guarantee the security of in-vehicle network!

Network Protocols Used in Autonomous Vehicles

s sowere | s | zawa | .
Layer 4 TCP/UDP
:Layer 3 IPv4/IPv6)
Layer2 IEEE Ethernet MAC + VLAN (802.1Q)
:'—ayef - Automotive Ethernet PHY: 100BASE-T1 “

A sample protocol stack in Ethernet-based autonomous vehicles:
1 Physical Layer: 100BASE-T1 Ethernet

1 Link Layer: MAC, VLAN

1 IP Layer: IP protocols, including IPv4, IPv6

! Transport Layer: TCP/UDP protocols

1 Application Layer: SOME/IP, RTPS, ZeroMQ ...

Generation-based Fuzz Testing of Protocols

O 00

\ 4

State | (Init) DataModel A —>é;;—|—) ‘ / \

C

e

r

Y

Y \ - . System
State |l DataModel B H@—»Mutation New Inputs |||—> Under

) ’ Test
(Y ~N a ~ ;
State Il > DataModel C —>é;r/i—)
Randomly Seleted
Elements

Fig. Workflow of generation-based fuzzing strategies.

Fuzzers usually produce large number of mutated inputs to the SUT to find potential bugs
Generation-based fuzzers are more suitable for fuzzing protocols due to the highly structured packets

For each data model, they randomly selected several data elements and mutate them

Motivation
Relations between protocol states: RTPS as an example

State: SEDP | ... |Version| GUID Prefix Topic | Type |Max Size
v v Ly
State: PUB ... |Version| GUID Prefix Data Payload

Fig. Sample relations between data elements in different RTPS states.

! Version -> Version, GUID Prefix -> GUID Prefix

® Their values should keep the same between states
® Otherwise, the under-test protocol will directly reject the following packet due to the inconsistence

Motivation

Relations between protocol states: RTPS as an example

State: SEDP

State: PUB

. [Version| GUID Prefix Topic | Type |Max Size
. |Version| GUID Prefix Data Payload

Fig. Sample relations between data elements in different RTPS states.

Version -> Version, GUID Prefix -> GUID Prefix

Their values should keep the same between states
Otherwise, the under-test protocol will directly reject the following packet due to the inconsistence

Topic, Type, Max Size -> Data Payload
These previous elements describe how the following elements are processed by protocol
The mutation probability of the following elements should be increased if the previous ones change

Motivation

Relations between protocol states: RTPS as an example

State: SEDP

State: PUB

. [Version| GUID Prefix Topic | Type |Max Size
. |Version| GUID Prefix Data Payload

Fig. Sample relations between data elements in different RTPS states.

Version -> Version, GUID Prefix -> GUID Prefix

Their values should keep the same between states
Otherwise, the under-test protocol will directly reject the following packet due to the inconsistence

Topic, Type, Max Size -> Data Payload
These previous elements describe how the following elements are processed by protocol
The mutation probability of the following elements should be increased if the previous ones change

Other Complex Relations in Protocols

Motivation

Traditional protocol fuzzing strategies: unable to learn and
leverage these relations

GUID
Prefix o ID

Magic | Version | Vender Flags |Length

UDP RTPS Message Submessage Submessage:DATA
Header Header Header Elements

QoS |[Reader| Writer [SeqNum| Data Payload

Fig. Basic template packet structure employed by RTPS protocol.

Complex structure with many specific data elements
Without relations, only able to randomly select several elements to mutate in each state

Low fuzzing efficiency and poor effectiveness

Overview of PAVFuzz
E Protocol

1 PAVFuzz starts with user-provided data
models of the under-test protocol

XML

Data “
Model Models

Choose

Overview of PAVFuzz

g—-— Protocol
2= @ Under Test

U

XML

Data
Model

Y

Choose

&
<

State-sensitive
Mutation

} _____

New Input

Data
Models

Relation Table

O

O

PAVFuzz starts with user-provided data
models of the under-test protocol

For each model, instead of random
mutation, it performs state-sensitive
mutation over data elements according
to the global relation table.

10

Overview of PAVFuzz

g—.-— Protocol
2= @ Under Test

U

XML

Data
Model

Y

Choose

&
<

State-sensitive
Mutation

} _____

Data
Models

Relation Table

New Input

Af Execution In EUT]

ﬁ Bug Report

1 PAVFuzz starts with user-provided data
models of the under-test protocol

! For each model, instead of random
mutation, it performs state-sensitive
mutation over data elements according
to the global relation table.

1 Each generated new input is injected to
the endpoint and PAVFuzz monitors the
execution to find potential bugs.

11

Overview of PAVFuzz

XML

Data
Model

Y

Choose

Next Data Model

A

&
<

State-sensitive
Mutation

} _____

Models

Relation Table

_____ Relation
Learning

A

New Input

(Coverage
L Execution In EUT H Collection

|

;@3 Bug Report

PAVFuzz starts with user-provided data
models of the under-test protocol

For each model, instead of random
mutation, it performs state-sensitive
mutation over data elements according
to the global relation table.

Each generated new input is injected to
the endpoint and PAVFuzz monitors the
execution to find potential bugs.

PAVFuzz collects coverage information for
each input and updates the relation table
in the relation learning part.

Relation Table

Element ID P Element_ID Value

-
-~ -
-

Model Name | Element_Name Model Name | Element Name

Fig. Structure of each basic cell in the Relation Table.

13

Relation Table

Element ID P Element_ID Value

S~

Model Name | Element_Name Model Name | Element Name

Fig. Structure of each basic cell in the Relation Table.

Example. SEDP Topic PUB Payload 66

1 Element_ID_P: the ID of data element in the previous state

1 An element id consists of model name and element name to guarantee the uniqueness

14

Relation Table

Element ID P

Element_ID

/
/
/
4

-
-

-
-
-
-——

Model _Name

Element_Name

Model Name

Element_Name

Fig. Structure of each basic cell in the Relation Table.

Example. SEDP

Topic

PUB Payload

66

1 Element_ID: the ID of data element in the successive state
1 State SPDP --> State SEDP --> State PUB

15

Relation Table

Element ID P

Element_ID

<

-
-
-
-

-
-
-
-

Model _Name

Element_Name

Model Name

Element_Name

Fig. Structure of each basic cell in the Relation Table.

Example. SEDP

Topic

PUB Payload

66

1 Value: temp value to measure the relation between these two data elements

1 Dynamically maintained and updated by PAVFuzz

16

Relation Learning: To Construct the Relation Table

Statey
1 Triggered when a packet with mutated
S,
XML . " ld elements touches new code coverage
D 1 Element pruning to get the minimum set S;,4
S @ 1 Generate packet m for each elem in S,
NN

.\ N
N

Element
Y Pruning g
\ .
o N \
AN ~.

\ Sid
U

XML
N e — [

17

Relation Learning: To Construct the Relation Table

Stateg

Interesting
Seeds Pool

Triggered when a packet with mutated
elements touches new code coverage

Element pruning to get the minimum set §;,4
Generate packet m for each elem in S;,4

Refer to the successive state B to pick the
set of m' for each elem’ from the seeds pool

18

Relation Learning: To Construct the Relation Table

Seq
+
Statey Stateg
D D'
elem elem’

Triggered when a packet with mutated
elements touches new code coverage

Element pruning to get the minimum set S;,4
Generate packet m for each elem in S;,4

Refer to the successive state B to pick the
set of m' for each elem’ from the seeds pool

Combine each pair of m and m' into new
packet sequences seq < m,m’ >

T, < elem,elem’ > increases when a seq < m,m’' > coveres new branches

State-Sensitive Mutation: Leveraging the Relations

XML

Instead of randomly choosing elements to mutate, it calculates the different mutation
weight W,;.,,, for each data element in current state to smartly recognize the key ones.

Velem € S;3, Weiom= Zelemp T, < elemy, elem >, elem, € Siq ,

¢

Experiment Setup
Research Questions

R1: Is PAVFuzz more efficient in fuzzing protocols used in autonomous
vehicles than start-of-the-art fuzzers?

R2: Can PAVFuzz effectively expose previously unknown vulnerabilities
in those widely used protocols in autonomous vehicles?

Experiment Setup

Selected Protocols Used in Autonomous Vehicles
! RTPS — Real-time Publish Subscribe Protocol

OIMIG] s EPROSIMA

The Middleware Experts

MANAGEMENT GROUP

AUTOSSAR' i'..n
L1 ZeroMQ

OMQ 1.

22

Experiment Setup

Selected Protocols Used in Autonomous Vehicles

Protocol Description
RTPS is the standard wire protocol used in Data Distribution
RTPS Service (DDS), which is adopted in many automatic driving

systems such as Adaptive AutoSar, Baidu Apollo, etc .

SOME/IP is a famous application protocol used in Ethernet-based
SOME/IP in-vehicle network systems for service discovery and
communication control over ECUs, carmers, radars, and so on.

ZeroMQ 1s a lightweight protocol for distributed communication.
ZeroMQ It has been adopted as alternative protocol in ROS2 (Robot
Operating System), a prototype system for automotive driving.

23

Efficiency of Fuzzing

25000

140000 16000
B Sanss 120000 14000
§ 1000001 120001 [
S 1000 s0000] { 10000
B |
B i —-—- AFL o —-—-AFL _ | 2000 —-—-AFL
’ 0 3 6 9 12 15 18 21 24 ’ ;; 3 & ® 12 15 18 21 24 ’ 0 3 6 9 12 15 18 21 24
(a) RTPS - FastRTPS (b) SOME/IP - vsomeip (¢) ZeroMQ - libzmq
Subject AFL Peach PAVFuzz T4 Ip
FastRTPS 14034 17107 23784 +69.47% +39.03%
vsomeip 14562 115147 138548 +851.44% +20.32%
libzmq 5621 14894 16114 +186.67% +8.19%
AVERAGE +369.19% +22.51%

AFL +369.19% |

Peach +22.51% T

24

Previous Unknown Vulnerabilities

Subject

Vulnerability

AFL

Peach PAVFuzz

FastRTPS

stack-buffer-overflow-1
stack-buffer-overflow-2
stack-buffer-overflow-3
stack-buffer-overflow-4
stack-buffer-overflow-5
stack-buffer-overflow-6
heap-buffer-overflow-1
heap-buffer-overflow-2
heap-buffer-overflow-3

vsomeip

allocate-out-of-memory
heap-buffer-overflow

XX | XXX XXX XXX

N[XX XX NI XNSN

e T T e T e R R W

libzmq

allocate-memory-failure

v

v

v

Total

12

1/12

6/12

12§12

DESIGN
AUTOMATION

FROM CHIPS TO SYSTEMS — LEARN TODAY, CREATE TOMORROW

DEC5-9,2021 4 San Francisco, California

Thanks for your attention!

