
ICS Protocol Fuzzing: Coverage
Guided Packet Crack and Generation
Zhengxiong Luo1, Feilong Zuo1, Yuheng Shen1, Xun Jiao2, Wanli Chang3, Yu Jiang1

1Tsinghua University, 2Villanova University, 3University of York

1

Outline

• Introduction
• Background
• Motivation

• Peach*
• System Design
• Evaluation

• Conclusion

2

Industrial Control System

• System of electronic components that control the physical operations
of machines.
• Support critical infrastructure
• Power system
• Transportation
• ...

3

Industrial Control System Protocol

• Build communications among system
components and devices.
• ICS is becoming more open, which has

increased the susceptibility to attack,
primarily due to greater awareness of
ICS protocols.
• Frequent accidents arising from ICS

protocol gravely threaten the ICS.

Attack Year

Venezuela	Blackout 2019

Saudi	Arabia	TRISIS 2017

Ukraine CRASHOVERRIDE 2016

Ukraine BLACKENERGY3 2015

German	Steel	Mill	Cyber	Attack	 2014

DragonFly 2014

Havex Malware 2013

Telvent Canada	Attack	 2012

4

Fuzz Testing for ICS Protocol

Protocol Parameters

Fuzzer

5

Generation-Based Fuzzing

Seeds
Target

Program
Generation-Based	

Fuzzer
CrashPit

6

File as a Tree

TheDataModel

ID Size Data CRC

CompressionCode SampleRate ExtraData

Pit
Relation:
sizeof

Fixup:
Crc32Fixup

7

Challenges

Seeds
Target

Program
Generation-Based	

Fuzzer
CrashPit

• Generation strategy is random and pointless.

8

Challenges

Seeds
Target

Program
Generation-Based	
Blackbox Fuzzer

CrashPit

• Blackbox: no access to the application’s internals.
• Previously generated valuables seeds are discarded.

9

Motivation

c Rule	

a Rule	 Rule	

b Rule	

Rule	
Fixup

(a)	Structure	of		Different	Packets	with	Different	Opcode

10

• Opcode field: encode the
instruction to be performed.

Motivation

c Rule	

a Rule	 Rule	

b Rule	

Rule	
Fixup

(a)	Structure	of		Different	Packets	with	Different	Opcode

11

• Opcode field: encode the
instruction to be performed.
• These different types of packets

would share similar data chunks.

Motivation

c Rule	

a Rule	 Rule	

b Rule	

Rule	
Fixup

(a)	Structure	of		Different	Packets	with	Different	Opcode

12

• Opcode field: encode the
instruction to be performed.
• These different types of packets

would share similar data chunks.

Motivation

c Rule	

a Rule	 Rule	

b Rule	

Rule	
Fixup

(b)	Control	Flow	Graph	of	Packet	Parsing	Code

(a)	Structure	of		Different	Packets	with	Different	Opcode

Fixup

a

c

b

13

• Opcode field: encode the
instruction to be performed.
• These different types of packets

would share similar data chunks.
• They would trigger different

program traces.

Motivation

c Rule	

a Rule	 Rule	

b Rule	

Rule	
Fixup

(b)	Control	Flow	Graph	of	Packet	Parsing	Code

(a)	Structure	of		Different	Packets	with	Different	Opcode

Fixup

a

c

b

• Opcode field: encode the
instruction to be performed.
• These different types of packets

would share similar data chunks.
• They would trigger different

program traces.
• Similarly, these traces would

share some parsing code blocks.

14

Outline

• Introduction
• Background
• Motivation

• Peach*
• System Design
• Evaluation

• Conclusion

15

Peach* Overview

Seed
Generation

Pit

New	Seeds

16

Peach* Overview

Instrumented
Program

Seed
Generation

CrashPit

New	Seeds

Trace	
Feedback

17

Peach* Overview

Instrumented
Program

Seed
Generation

CrashPit

Valuable	Seed	
Identification

New	Seeds

Valuable	
Seeds

Trace	
Feedback

18

Peach* Overview

Instrumented
Program

Seed
Generation

CrashPit

Valuable	Seed	
Identification

Packet	
Cracker

New	Seeds

Valuable	
Seeds

Trace	
FeedbackPuzzles

19

Peach* Overview

Instrumented
Program

Seed
Generation

CrashPit

Valuable	Seed	
Identification

Packet	
Cracker

New	Seeds

Valuable	
Seeds

Trace	
FeedbackPuzzles

20

Peach* Overview

Instrumented
Program

Seed
Generation

CrashPit

Valuable	Seed	
Identification

Packet	
Cracker

New	Seeds

Valuable	
Seeds

Trace	
Feedback

Puzzle
Corpus

21

Valuable Seeds Identification

Instrumented
Program

New	Seeds

Trace	
Feedback

• By injecting instrumentation at branch points
in the target program, the execution trace of
each seed is available.

22

Valuable Seeds Identification

Instrumented
Program

Valuable	Seed	
Identification

New	Seeds

Valuable	
Seeds

Trace	
Feedback

• By injecting instrumentation at branch points
in the target program, the execution trace of
each seed is available.

• Then, these seeds that achieve new code
coverage are considered valuable.

23

Packet Cracker

Packet	
Cracker

Valuable	
Seeds

Puzzle
Corpus

• Those valuable seeds would be cracked into
puzzles to improve seed generation.

24

Packet Cracker

• Those valuable seeds would be cracked into
puzzles to improve seed generation. Packet	

Cracker

Valuable	
Seeds

Puzzle
Corpus

cba
Valuable	Protocol	Packet

a

b

c

b,c
a,b,c

Puzzle
Corpus

25

a+b+c

a b+c

b c

Seed Generation

• If the puzzle corpus is vacant, the seed
generation strategy remains inherent.

Seed	
Generation

New	
Seeds

Puzzle
Corpus

26

Seed Generation

• If the puzzle corpus is vacant, the seed
generation strategy remains inherent.
• Otherwise, semantic aware generation

strategy would be applied:
• For each chunk to generate, Peach* find those

puzzles that conform to its rule from corpus.
• Then, those appropriate pieces are selected to

derive new seeds in preference to instantiation
from input model.

Seed	
Generation

New	
Seeds

Puzzle
Corpus

27

Evaluation

• E1: Is Peach* more efficient than Peach, when augmented with the
proposed fuzzing strategy?

• E2: Is Peach* effective in exposing previously unknown vulnerabilities
in real-world ICS protocol applications?

Optional Insert Copyright
28

Evaluation Setup

Optional Insert Copyright

• We selected several widely used open-source implementations of ICS
protocols.
• Including Modbus, IEC 61850, DNP3, etc.

• Those ICS protocols are international standard widely used in critical
infrastructures.

29

E1: Optimize Fuzzing

30

Average number of paths covered by Peach* and Peach within 24 hours for 10
repetitions on each ICS protocol program.

Peach

Peach*

E1: Optimize Fuzzing

31

Compared with the original Peach, Peach* achieves the
same code coverage and bug detection numbers at the
speed of 1.2X-25X, and gains final increase with 8.35%-

36.84% more paths within 24 hours.

E2: Previously Unknown Vulnerabilities

• Peach* has exposed 9 previously unknown vulnerabilities.

32

Outline

• Introduction
• Background
• Motivation

• Peach*
• System Design
• Evaluation

• Conclusion

33

Conclusion

• Peach* is an automated fuzzing tool targeted for ICS protocol
vulnerability detection and can perform:
• Use coverage information as guidance;
• Build high-quality corpus based on the cracked packet pieces;
• Perform semantic aware generation strategy.

• Peach* outperforms Peach:
• 10~40% coverage improvement
• 2~25X speedup.

• Peach* has been tested on several ICS protocols and detected many
serious previously-unknown vulnerabilities in Modbus, IEC 60870,
ICCP, etc.

34

Thanks for your attention!
Q&A

luozx19@mails.tsinghua.edu.cn

