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Abstract—Protocol fuzzing is an effective technique for discov-
ering vulnerabilities in protocol implementations. Although much
progress has been made in optimizing input mutation, the initial
seed inputs, which serve as the starting point for fuzzing, are still
a critical factor in determining the effectiveness of subsequent
fuzzing. Existing methods for seed corpus preparation mainly rely
on captured network traffic, which suffers from limited diversity
due to the biased message distributions present in real-world
traffic. Protocol specifications encompass detailed information on
diverse messages and thus provide a more comprehensive way
for seed corpus preparation. However, these specifications are
voluminous and not directly machine-readable.

To address this challenge, we introduce PSG, which enhances
protocol fuzzing by leveraging large language models (LLMs)
to analyze protocol specifications for generating a high-quality
seed corpus. First, PSG systematically reorganizes the protocol
specification metadata into a structured knowledge base for ef-
fective LLM augmentation. Then, PSG employs a grammar-free
method to generate target protocol messages and incorporates an
iterative refinement process for better accuracy and efficiency.
Our evaluation on 7 widely-used protocols and 13 implemen-
tations demonstrates that PSG can effectively generate diverse,
protocol-compliant message inputs. Moreover, the generated seed
corpus significantly improves the performance of state-of-the-art
black-box and grey-box protocol fuzzers, achieving higher branch
coverage and discovering more zero-day bugs.

Index Terms—Protocol Fuzzing, Protocol Grammar, Code
Generation

I. INTRODUCTION

Protocol implementations are crucial to network infrastruc-
tures and, by their nature, are typically exposed directly to the
network. As such, they must accurately process any malformed
or malicious traffic to prevent security breaches. Undetected
vulnerabilities in these implementations can render devices
vulnerable to adversaries. For example, the infamous Heart-
bleed vulnerability [[L] in OpenSSL could expose sensitive data
and was widely exploited, affecting a significant portion of
the Internet infrastructure. Therefore, ensuring the reliability
of protocol implementations is crucial.

Fuzzing is an effective testing technique for uncovering
bugs in real-world software [2]]. In protocol fuzzing, a fuzzer
continuously generates input messages and sends them to the
target protocol program to uncover potential anomalies. Based
on the input-generation method, protocol fuzzers are classified
into generation-based and mutation-based. Generation-based
fuzzers [3], [4]], [S], [6], like BooFuzz [7], generate messages
from scratch by adhering strictly to a user-provided protocol
model. While this approach can effectively cover the logic
within the model, it cannot exercise logic beyond the confines

of the model, as pointed out by [8]]. Thus, their effective-
ness heavily relies on the quality of this user-defined model.
However, crafting a comprehensive model is non-trivial due
to varied message formats and complex interaction logic.

Mutation-based approaches [9], [10]], [11], [12], such as
AFLNet [[13], produce new inputs by mutating existing ones
from a corpus. This corpus is typically initialized with seed
inputs extracted from real-world traffic captured during utility
exchanges [14], where each input corresponds to a concate-
nated message sequence. Given that the input space typi-
cally maps to the program state space, triggering different
program processing logic requires diverse inputs reflecting
the enormous variations in protocol formats. Despite much
research in optimizing the input mutation [10], [[13], [12], the
efficacy of mutation-based fuzzers remains highly dependent
on the quality and diversity of the initial seed corpus, as
it shapes the initial state space for fuzzing and impacts the
direction of further exploration. This is particularly true for
protocol fuzzing due to its complex logic, where a valid input
requires correct message format, sequence, and parameter
dependencies—making it challenging to create valid inputs
covering new formats through relatively random mutation.
However, traditional seed corpus preparation methods lack
diversity due to message distribution biases present in network
traffic and evolving protocol features. To overcome this, we
can utilize protocol specifications instead of relying on the cap-
tured traffic for a diverse seed corpus. Protocol specifications,
i.e., RFCs (Request for Comments), standardize protocols to
ensure interoperability and provide comprehensive details on
different formats. However, these RFCs are voluminous with
complex interrelationships and are written in natural language
rather than machine-readable formal language. Meanwhile,
they describe message formats abstractly without specific
instantiation details, which need to be contextualized within
specific interaction scenarios. Thus, we need an automated
tool to accurately interpret RFCs and effectively apply them
to generate input messages.

Recent advancements in large language models (LLMs)
have shown significant potential in handling such tasks owing
to their powerful natural language processing capabilities.
Motivated by this, we propose PSG, which leverages an LLM
to analyze protocol RFCs and generate a high-quality initial
seed corpus for enhancing protocol fuzzing. To achieve this
approach, we need to address two main challenges: (i) How
to process extensive RFCs for effective LLM augmentation?
While the LLM possesses partial knowledge of standardized
protocols from its training data, this knowledge remains in-
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complete. It is, therefore, necessary to augment the LLM
with protocol-specific knowledge. However, each protocol has
numerous RFCs with complex interrelationships and substan-
tial content, challenging the LLM’s ability to comprehend
and utilize them for input generation. (ii) How to effectively
generate valid input for various protocols? Generating valid
input for protocols is challenging due to the complex message
formats and dependencies. Besides, given that different pro-
tocols exhibit customized formats, a versatile method that is
applicable across diverse protocols while ensuring generation
accuracy and efficiency is essential.

For the first challenge, we collect the specification metadata
of the target protocol and systematically reorganize it by
utilizing protocol parameter registry information and handling
their complex interrelationships. This approach constructs a
comprehensive overview that outlines various formats within
a structured knowledge base, explicitly illustrating their af-
filiation and dependency relationships. Meanwhile, for an
effective LLM augmentation, we enrich this knowledge base
by retrieving pertinent RFC content related to specific message
generation, ensuring that the LLM is provided with essential
yet concise information for better performance.

To address the second challenge, we leverage the established
knowledge base to augment the LLM and implement optimiza-
tion for efficient input generation. First, we plan generation
tasks based on the recovered overview of diverse formats while
considering their dependencies. Subsequently, directly gener-
ating the target messages is challenging due to complexities
inherent in formats, which involve field values, relationships,
octets, and encoding. A common approach in this domain
is to develop specialized grammars coupled with associated
generators, which facilitate clear delineation of message for-
matting logic while avoiding the pitfalls of low-level details
involving field computation or message assembly. However,
crafting a universal grammar capable of expressing all possible
formats is challenging, especially when it comes to varied
field relationships. Motivated by this concept yet seeking more
flexibility and efficiency, we exploit the LLM’s coding abilities
to generate Python code—a flexible high-level programming
language familiar to the LLM—as an intermediate step in
the generation of target messages. This yields a grammar-
free approach that is more adaptable. Furthermore, given the
complexity of protocol formats and versatile dependencies,
generating the correct input in one step remains a challenge.
To improve accuracy and efficiency, we incorporate an iterative
process that incrementally refines the message by addressing
issues identified within the currently erroneous message under
dual guidance: (i) server feedback, which provides validation
or error information; and (ii) analysis of historical successes,
which aids in pinpointing error-prone fields requiring attention.
Specifically, regarding learning from success, we employ mes-
sage alignment to identify modified bytes that correct original
flaws during refinements and conduct lightweight program
analysis on the generation code to trace back relevant message
fields requiring attention. This strategy not only provides in-
sights useful for subsequent generations to avoid recurring pit-
falls, achieving a self-improving generation pipeline, but also
improves method generalization when applied across various

protocol implementations—especially when server feedback

lacks detailed, actionable information.

We evaluate PSG on 7 widely-used protocols: BGP, HTTP,
DNS, CoAP, RTSP, SSH, and FTP. The results show that PSG
can generate syntactically and semantically correct inputs for
all desired formats. It covers 2.9x more unique formats than
a method relying solely on the internal knowledge of the
LLM without augmentation, and 1.7x more than a method
employing the knowledge base to directly generate messages
without optimization and guidance. To further demonstrate the
effectiveness in enhancing fuzzing, we utilize the generated
seed corpus to initialize state-of-the-art protocol fuzzers, in-
cluding grey-box fuzzers AFLNet [13] and ChatAFL [12] as
well as black-box fuzzer Snipuzz [[10], and evaluate their per-
formance on 13 protocol implementations. The enhanced seed
corpus enables these fuzzers to cover 11.2%, 9.5%, and 10.3%
more code branches , respectively, on average over 24 hours,
leading to the discovery of 10 new security-critical bugs in
these well-tested, widely-used implementations. Most of them
had remained undetected for years by existing techniques. As
of the submission, 8 of these bugs have been assigned CVEs,
all with CVSS scores rated as high or critical, highlighting
their security impact. Our main contributions are as follows:
o We propose to enhance protocol fuzzing by harnessing the

LLM to analyze protocol RFCs and generate a high-quality

seed corpus.

o We design a method to process extensive protocol RFCs
for effective LLM augmentation and propose a versatile
method applicable to generate valid and diverse seed inputs
for various protocols.

o We implement and evaluate PSG on 7 widely-used pro-
tocols. The results demonstrate that PSG effectively gen-
erates valid and diverse seed inputs, enhancing state-of-
the-art protocol fuzzers by covering more code branches
and discovering many security-critical new bugs in well-
maintained protocol implementations. Given that the proto-
cols are standardized, the generated corpus can be reused
to fuzz different implementations of the same protocol.

II. MOTIVATION

This section uses the Border Gateway Protocol (BGP) to
highlight the need for a diverse seed corpus for effective
protocol fuzzing and shows the potential and challenges of
using the LLM for this task.

BGP Overview. Figure [l illustrates the BGP state ma-
chine from RFC 4271 [15], featuring four states: IDLE,
OPENSENT, OPENCONFIRM, and ESTABLISHED. It uses
five message types: OPEN, KEEPALIVE, UPDATE, NOTIFICATION,
and ROUTE REFRESH. The process starts in the IDLE state,
awaiting a connection. Upon establishing a TCP connection,
it moves to OPENSENT, where it awaits another peer’s
KEEPALIVE message to confirm connectivity. If successful, the
session progresses to the ESTABLISHED state, where both
BGP peers can exchange routing information using either
UPDATE or possibly ROUTE REFRESH messages while main-
taining connectivity through periodic KEEPALIVE messages.
Additionally, any issues signaled by a NOTIFICATION message
can cause the session to revert to the IDLE state.
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Figure 1: BGP state machine. The ROUTE REFRESH is under-
lined to show it is used only when specifically enabled during
the OPEN exchange. The two numbers in brackets represent the
count of formats that are (recognized/unrecognized) by GPT-
4o for each message type, respectively.

BGP has five primary message types (or clusters), each of
which can encompass various subtypes with different formats
for extensibility, as shown in the brackets next to each message
type in Figure |1} New features are typically introduced using
new type codes coupled with specific value structures in the
Type-Length-Value (TLV) framework. For example, Figure [2]
shows an example OPEN message with subtype Multiprotocol
Extensions Capability, where type, length, and value fields
are shown in Lines 14, 15, and 16-18, respectively. Empowered
by this, the OPEN does more than convey basic identifying
information (e.g., the Autonomous System Number Line 5),
but also negotiates capabilities that significantly affect ses-
sion behavior, including handling of subsequent UPDATE or
ROUTE REFRESH messages. These capabilities determine which
features are enabled during the session. For example, the
Multiprotocol Extensions Capability (RFC 4760 [16],
Lines 13-18 in Figure 2)) allows multiple address families like
IPv6 during routing information exchange. If it is disabled,
related routing information expressed in these address families
in UPDATE messages will be rejected. Similarly, the Route
Refresh Capability (RFC 2918 [17]) allows peers to send
ROUTE REFRESH messages in the ESTABLISHED state. With-
out it, any sent ROUTE REFRESH messages will be discarded
by the receiver. Similarly, other message types each also have
various subtypes with distinct formats and semantics, affecting
the receiver’s behavior differently. This diversity in message
format is also present in other broad protocols like DNS and
HTTP, as shown in our statistics in Section

Observation-1: Protocol typically features numerous mes-
sage formats. Generating diverse inputs reflecting these vari-
ations is crucial for activating the corresponding processing
logic in implementations.

Impact of Seed Corpus on Fuzzing Exploration. A
fuzzer’s input generator is responsible for producing diverse
inputs reflecting the enormous variations in the protocol mes-
sage formats. How effectively does a fuzzer achieve this goal?

Figure [2| shows the mutation trace from an OPEN mes-
sage with Multiprotocol Extensions Capability (with
value (AFI, Reserved,SAFI)) to one with Route Refresh
Capability (with no capability value and capability length
set to 0). This involves altering five fields and detecting
three, as highlighted in Figure This is a complex task
necessitating multiple mutation steps due to low success rate in
one attempt. However, partial mutations may lead to rejection;

01 ( Marker = Oxffffffffffffffffffffffffffffffff
02| Length = 37 => 33
03| Type = OPEN (1)
04| Version = 4
05| My AS = 64512
06| Hold Time = 180
07 | BGP Identifier = 192.168.10.5
08| Opt Param Len = 8 =>4
09| \Opt Params\
10| | Param Type = Capability (2)
11| | Param Length = 6 =22
12| | \Param Value\
13| | |-—[Multiprotocol extensions capability]--—
14| | | Code = Multiprotocol extensions (1) => Route refresh (2)
15( | | Length =4 => 0
16| | | AFI = IPv6 (2) => Delete
17| | | Reserved = => Delete
18| | | SAFI = Unicast (1) => Delete
Figure 2: A BGP OPEN message with Multiprotocol

Extension Capability, along with its mutation trace to
Route Refresh message. For bracketed fields, bracketed val-
ues are actual values, and unbracketed text shows semantics.

for example, changing only the Length field in Line 2 may
fail sanity checks. Such rejected inputs would be discarded
by the fuzzer as they do not improve code coverage. For
further demonstration, we conducted a statistical analysis of
fuzzing BGP implementations using the well-known fuzzer
AFLNet. Starting with an initial seed corpus covering ten
different message formats, after 48 hours of fuzzing—even
with optimized mutation strategies—AFLNet explored only
five more message formats out of 82 total. This highlights the
importance of high-quality seed corpus for effective fuzzing.

Observation-2: Protocol fuzzers have introduced various
optimizations in the mutation strategy for input generation,
though, the quality of the initial seed corpus remains a critical
factor limiting effectiveness.

The seed corpus is typically crafted based on captured
messages exchanged between protocol utilities, but this lacks
diversity due to the simplicity of project-provided utilities and
biases in real-world message distribution [18]]. Protocol im-
plementations are developed based on the RFCs for interoper-
ability, making them a comprehensive and accurate source for
diverse message formats. However, natural language-expressed
RFCs are not directly usable by computers. Recent advances
in LLM offer the potential to bridge this gap.

LLM’s Awareness of Different Message Formats. Recent
research ChatAFL [12] shows the LLM’s effectiveness in
mitigating seed corpus diversity issue for textual protocols by
leveraging their internal knowledge. The insight is that the
LLM is pre-trained on vast internet data that already includes
publicly available protocol RFCs. However, we question if the
LLM accurately and comprehensively captured this knowledge
for directly generating diverse inputs for protocol fuzzing.
To explore this, we empirically study GPT-40’s awareness of
different BGP message formats.

First, we evaluated GPT-40’s awareness of five primary
message clusters and found it can provide comprehensive
and accurate answers, aligning with ChatAFL’s fundamental
insights.

Then, we further investigated its grasp of different formats
within each cluster by querying format details three times
per format name, considering at least one correct answer as
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successful recognition. Figure [T] shows that, out of all 82 mes-
sage formats, GPT-40 correctly answered 48 of them (59%),
indicating the LLM’s incomplete or inaccurate knowledge
capture. Despite all related RFCs being available before 2022
and likely included in its training data [19], the model ex-
hibits a narrower expert knowledge boundary compared to
the broader scope of the training data due to the long-tail
effect [20]. Notably, accurately answering these questions
is just one step towards comprehensive message generation,
which also requires correct field values and message orders
to satisfy protocol constraints—a challenging task demanding
strong reasoning skills. This is further supported by the results

in Section [V-D}

Observation-3: GPT-4o, as a representative LLM, has par-
tial but not comprehensive awareness of different message
formats for specific public protocols. Thus, relying solely on
its encoded knowledge is insufficient for generating diverse
inputs covering varied formats needed for protocol fuzzing.

Basic Idea and Challenges. As discussed above, a diverse
seed corpus covering various message formats is crucial for
effective fuzzing, with RFCs serving as a comprehensive
source for various message formats. While the LLM may only
capture partial protocol knowledge, its excellent NLP abilities
can help bridge the gap between natural language-expressed
RFCs and machine-readable inputs by augmenting additional
RFC information. This approach offers a general solution
beyond relying solely on LLM-encoded knowledge and thus
can be applied to similar tasks. To achieve this approach, we
must tackle the following two challenges:

Challenge#1: Handling complex and extensive RFCs for
effective LLM augmentation. This involves two aspects: (i) As
shown above, the LLM lacks an overarching view of various
message formats, necessitating reconstructing this view for
generation task planning. (ii) RFCs are complex and extensive,
requiring careful processing. For instance, BGP has 188 RFCs
totaling 3455 pages [21]], but not all content is relevant
to message formats. Meanwhile, RFC interrelations can be
intricate—some may update or obsolete others. Therefore,
simply feeding all related RFCs into the LLM may exceed
text window limits, and irrelevant content could hinder the
learning effect [22], [23].

Challenge#2: Designing a generation strategy that can
effectively generate valid inputs for various protocols with
varying grammars. Generating valid protocol inputs is non-
trivial, requiring messages to be structurally and semantically
correct while adhering to constraints on message order and
fields. This challenge intensifies with binary protocols, where
field names are implicitly referred to by their positions within
the message, and the semantic meanings of field values are
not directly interpretable (e.g., value 2 indicates “IPv6” in
Figure [2). Textual protocols, however, use clear key-value
pairs where both field names and values are explicitly stated.
Meanwhile, automatically verifying generated inputs is also
challenging. While the LLM exhibits some self-reflection [24],
this is unreliable for validation. Besides, diverse grammar
across various protocols further complicates developing a
universal input generation strategy.

III. SYSTEM DESIGN

In this section, we first introduce the workflow of PSG and
then elaborate on the design details.

Overview. Figure [3|shows PSG’s overview. The grey boxes
are the inputs and the blue box is the output. Inputs include
specification metadata from the Internet Engineering Task
Force (IETF) website [25], where official protocol specifica-
tions are published, and the under-test protocol server. This
server access aids in generating inputs by providing feedback.
After analysis, PSG outputs a high-quality seed corpus cov-
ering diverse message formats for further fuzzing. At a high
level, PSG comprises two main components addressing the
two challenges discussed in Section

Rebuild Relation

Code Generation

1

Dispatch
Tasks
Knowledge Input Execution |-—|Verify and Refine|

Base T ¥

&

Protocol Server

L 11 |
Knowledge Base Construction (§III-A) Grammar-Free Input Generation (§I1I-B)

Protocol [ Oracle Map ]

Specification
Metadata

Figure 3: PSG Overview. (a) The knowledge base construction
module organizes message formats, rebuilds their relation-
ships, and retrieves related RFC content. (b) The grammar-free
input generation module generates the desired messages via an
intermediate code generation process and iteratively refines the
code for accuracy and efficiency.

(1) Knowledge Base Construction. This module builds a de-
tailed knowledge base from the target protocol’s specification
metadata to augment the LLM. The knowledge base outlines
various protocol formats, their affiliations, and dependencies,
serving as a guide for generating inputs in subsequent tasks.
Meanwhile, for each message format, we extract key informa-
tion from extensive RFC documents to ensure essential details
are readily available for generation.

Figure [] shows an example snippet of the knowledge base
for BGP. The knowledge base is structured hierarchically: pri-
mary message types or clusters are at the top level, followed by
extensible fields at the second level. Extensible fields are those
that (i) have multiple predefined values, each corresponding
to a specific format, or (ii) can be optional in messages (e.g,
Accept header name in HTTP). These extensible fields can
also be nested, creating a tree-like structure represented with
additional levels in our format. Leaf nodes provide details
about the corresponding formats, including field code (or field
name for the optimal extensible fields, i.e., the class (ii) above),
dependency, reference RFCs, and retrieved content from these
RFCs. Take the ROUTE REFRESH message in Figure [ as
an example. The Subtype field is an extensible field with
registered values including Route Refresh and BoRR. The
Route Refresh is denoted using code 1. This format requires
the presence of [OPEN].[Capability].[Route Refresh]
message, since the Route Refresh message is only valid
when the Route Refresh Capability is enabled in the OPEN
message, as illustrated in Section[[I} The relevant specifications
can be found in Sections 3 of RFC 2918 and Section 4 of
RFC 5291. This hierarchical structure provides a clear and
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organized view of the message formats and their details, which
is essential for the subsequent input generation tasks.

OPEN:
Capability:
Multiprotocol Extensions:
Code: 1
Dependency: null

T

1 ROUTE REFRESH:

1

1

1

1

1
Reference: RFC 2858 |

1

1

1

1

1

1

1

1

Subtype:
Route Refresh:
Code: 0
Reference: RFC 2918, RFC 5291
Dependency: [OPEN]. [Capability]. [Route Refresh]
Retrieved Content:
- [RFC 2918 Section 3]
- [RFC 5291 Section 4]
Generated Message: null
BoRR:

Retrieved Content:
- [RFC 2858 Section 7]
Generated Message: null
Route Refresh:

Figure 4: Example knowledge base for BGP in YAML.

(2) Grammar-Free Input Generation. Based on the estab-
lished knowledge base, this module first plans the generation
tasks based on the dependency requirements and then gen-
erates them sequentially. For each task, such as construct-
ing an input containing OPEN message with Multiprotocol
Extension Capability, it extracts the retrieved content from
the knowledge base as the background knowledge to support
LLM augmentation. Instead of directly generating messages,
we instruct the LLM to produce a code that constructs the
target messages, enabling a grammar-free generation. Then,
this module sends the generated input to the protocol server
and receives the response as feedback, which serves two
purposes: (i) validation—successful inputs are added to the
seed corpus. (ii) refinement guidance—when errors occur,
this feedback would be analyzed to identify and correct the
error iteratively. During the generation, we also maintain an
Oracle Map that records historical refinement experiences. It
is built from successful refinements and uses lightweight code
analysis to pinpoint error causes, providing guidelines for ad-
dressing similar errors in future refinement. After completing
all generation tasks, this module outputs a high-quality seed
corpus with diverse message formats, which is used for further
effective fuzzing.

A. Knowledge Base Construction

(1) Rebuild Relation. First, we rebuild the overarching
view of diverse protocol formats, including their affiliation
and dependencies.

(i) Relation Extraction. In this step, we re-establish different
message formats and their affiliated types. We leverage the
information from the Internet Assigned Numbers Author-
ity (IANA) registry [26]. TANA coordinates the allocation
of values for newly supported protocol parameters, such as
message types, options, and extensions. This provides com-
prehensive information about the assigned values of each
parameter. So, our main objective is to classify these protocol
parameters into their attributive parent message types. We
achieve this by prompting the LLM to identify each param-
eter’s corresponding message type and then grouping related
parameters together. Based on this affiliated relationship, we
further fill in all the listed possible values for each parameter.

(ii) Update Reference RFCs. The RFCs recorded in the
TIANA registry are not always up-to-date because protocol
specifications evolve continuously, while the registry typically
records the original version. To ensure accuracy, we need to
update the reference RFCs for each entry. We achieve this

by analyzing the RFC header to determine its status and
relation with other RFCs (e.g., whether it is obsoleted or
updated), following guidelines from the RFC Style Guide [27].
Let S = {Ry, Ra,...,R,} represent the reference RFCs for
an entry, we analyze each R;’s header individually: if R; is
obsoleted by another RFC, we replace it in S; if R; is updated
by others, we add those to S. This process is repeated until
no more changes can be made to S.

(2) Retrieve Content. Based on the recovered overarching
view of different message formats established above, we
further retrieve the relevant content from RFCs for each entry
in the knowledge base (see Figure ). This helps to filter
out irrelevant information and retain necessary yet concise
information, ensuring that the LLM has essential knowledge.

(i) RFC Splitting. First, for each message format, we analyze
its reference RFCs individually. Instead of directly splitting
one RFC document into fixed-length segments—which can
disrupt content integrity and context—we leverage the struc-
tured nature of the RFC, i.e., each section is self-contained
and less reliant on others. Therefore, we use sections as our
primary unit for splitting. This approach produces multiple
blocks per RFC document, each with a manageable size and
self-contained content.

(ii) Block Selection and Dependency Identification. Next, we
analyze each block individually to select blocks relevant to the
corresponding format and identify the dependencies between
different formats. We leverage the LLM’s text comprehension
capabilities to determine the relevance using the prompt shown
in Figure [5| Meanwhile, to address potential bias in the
LLM’s responses, we adopt a voting mechanism by asking
the same question multiple times to obtain a consensus. These
selected blocks and identified dependencies are then stored
in the “Retrieved Content” and “Dependency” fields of the
corresponding entry in the knowledge base.

You are analyzing a section from [RFC number]. Your task is to determine:

1. if this section provides format specifications directly related to [Message Format].
Specifically, look for field values, lengths, structures, and their relationships as
they pertain to [Message Format]. Respond with "yes" only if it includes related
specifications. Otherwise, respond with "no".

2. if this section indicates a dependency between [Message Format] and [Other Message
Format List]. Respond the dependency if it exists. Otherwise, respond with "null"
Figure 5: Prompt template for knowledge base construction
with placeholders, where [RFC number], [Message Format],
and [Other Message Format List] denote the actual RFC
number, target message format, and the list of other message

formats, respectively.

B. Grammar-Free Input Generation

After constructing the knowledge base, the next step is to
generate valid inputs for the target protocol. This involves
planning generation tasks to ensure message dependencies
using the protocol overview provided by the knowledge base
and utilizing stored necessary knowledge to augment the LLM
to generate diverse yet protocol-compliant inputs. Algorithm [T]
outlines the key steps.

(1) Dispatch Tasks. PSG first plans the generation tasks
and then conducts them sequentially (Line [T). This planning
process should ensure that (i) all message formats are covered,
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Algorithm 1: Grammar-Free Input Generation

Input : S - Information of the protocol server
By - Knowledge base for the target protocol
Output: Corpus - Generated seed corpus
1 for F' in TASKPLANNING(By) do
2 I <+ null
3 Dp,I1p = SEARCHKNOWLEDGEBASE(By, F') // Prepare
format details Dp and prefix message sequence
Il for subsequent generation
4 for (attempts from 1 to MaxGenerationAttemps) and (I is null)
do
// Generate an initial input
LLM.init()
C% = LLM(Pgen (S, Dr])
M. = EXECUTE(CY.)
Rug = Q>(Ilp, M7)
// Validate the input and refine it if necessary
9 Rrrvm =
LLM (Pval_ref [MI%, R]\/II% ) OraCIEMap{,R’IW% }D

® 9w

10 if VALIDATE(R L1, 7s) then
11 UPDATEKNOWLEDGEBASE(By, F, M},)
12 I = CONCATENATE(IIf, My.)
13 Corpus.append(])
14 else
15 for (i from 1 to MaxRefineDepth) and (I is null) do
16 Ci, = EXTRACT(RLL M)
17 M}, = EXECUTE(CY,)
18 R, = Q5(p, M%)
19 Rrivm = _
LLM(IP’ml_mf[M;,,RM}-:,OracleMap{RM% H))
20 if VALIDATE(R L1, ps) then
21 UPDATEKNOWLEDGEBASE(By, F, M)
2 I = CONCATENATE(ITF, M},)
23 Corpus.append(])
2% Ap(ML) = ALIGNDIFF(M S, M%)
25 NewAttenFields =
PROBE(C?, Ag (ML)
26 UPDATEORACLEMAP('RM% , NewAttenFields)

27 return Corpus

and (ii) dependencies between different message types should
be considered to determine generation order. For example,
for Figure |I} a KEEPALIVE message should follow an OPEN
message. Therefore, the generation of the KEEPALIVE message
should be scheduled after the OPEN message. This dependency
is crucial as it enables the protocol server to transition into an
appropriate state, thereby facilitating more precise feedback
during the evaluation of the generated KEEPALIVE messages.
To achieve this sequencing, PSG leverages these dependencies
to establish a macro-level order for generating messages. It
starts with OPEN messages, followed by KEEPALIVE messages,
then UPDATE messages, etc. Within each message type, PSG
processes all associated message formats before moving on
to the next type. For BGP protocol messages specifically, it
completes all formats of the OPEN message before proceeding
with those of the subsequent types like the KEEPALIVE.

For each generation task, e.g., generating an input con-
taining format F' of message type 7, the algorithm retrieves
details D from the knowledge base using F' as entry and
computes the prefix message sequence IIp (Line [3). To
prepare this prefix message sequence, it first identifies the
necessary message type prefixes Il = (II%, 1%, ... II%)
to drive the protocol server to a state that accepts message

type T. Here, aim for brevity by computing the shortest
sequence. Since modern protocol fuzzers already incorporate
sequence-level mutations, our focus is on generating concise
sequences as seed inputs. Then, the algorithm instantiates
each message type II5(i € [0,n]) as II% by selecting a
concrete message from message type 7. Here, the concrete
message is guaranteed to be already generated and stored
in the knowledge base since the generation order computed
in the planning ensures this. The selection is based on the
dependency records in entry F' within the knowledge base. If
specific dependencies exist for I, it selects the corresponding
concrete message accordingly; otherwise, it randomly chooses
a message from type T'. This process is repeated until all the
message types in 11 are instantiated, forming the final prefix
message [1p = (T1%, TIL,, ... TI%).

(2) Code Generation. For a target format F', the above
process prepares the necessary information D for augment-
ing the LLM and prefix message sequence IIr to drive the
protocol server to the appropriate state. The algorithm then
enters the generation phase (Lines f}26).

During this generation phase, the algorithm attempts multi-
ple times (up to MaxGenerationAttempts) to produce a valid
input for F' (Line [). Each attempt involves iteratively gener-
ating an initial input (Lines [5}{9) and refining it until either a
valid input is achieved or the maximum refinement depth is
reached (Lines [I0}26)). This design is based on the fact that the
initial generation significantly influences the final outcome. If
the initial attempt deviates greatly from the correct format,
refinement becomes more challenging and time-consuming.
Thus, a “restart” mechanism is necessary to ensure efficiency.

In each generation attempt, the LLM is reset (Line [3)
and operates in conversational mode to generate the target
message gradually. We provide the LLM with server informa-
tion (S) and format details (D) for augmentation (Line @
Dp contains specifications from RFCs related to F, helping
compensate for the LLM’s limited protocol format knowledge
(see Section . Server information S, including IP address,
port number, and some configuration details, is crucial as some
protocol fields may depend on this data for generation.

Providing the above necessary information, we instruct the
LLM to generate the desired message. There are several
choices for the generation: (i) Direct Message Generation.
Since protocols can be binary, messages may contain non-
ASCII binary data. In this case, instructing the LLM to provide
the hex stream for the message is a feasible solution. However,
this approach is challenging due to complex field dependencies
and hierarchical structures. Our experience shows that while
the LLM can assign correct values for most fields, it struggles
with correctly generating complete hex streams. It tends to
omit some fields during assembly and has difficulty accurately
computing relational fields like length and checksum, even
when it knows how to calculate them. The inefficiency of
this approach is further demonstrated in our evaluation in
Section (ii) Grammar-Based Generation. Designing
grammar helps address the above problem of complex field
relationships by explicitly defining their logic. The LLM only
needs to correctly express the format logic using the grammar
without performing error-prone low-level computations. A
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generator then uses this logic to create fields and assemble
messages, ensuring consistency between expressed logic and
computed results. However, this approach is also challenging.
First, each protocol has its own format, necessitating a versatile
grammar that can represent all possible protocol formats. This
demands significant expertise and manual effort and may be
infeasible for some complex protocols. Second, implementing
both a parser for interpreting this grammar and a generator
for message creation is non-trivial. Third, teaching the LLM
to use this grammar correctly poses additional challenges.

To address these challenges, we propose an approach
that bridges the gap between natural language and protocol
language by leveraging the LLM’s coding capabilities [28].
Specifically, we instruct the LLM to generate a Python code,

., for constructing the target message (Line @) Conceptu-
ally, Python can be considered a form of grammar. The LLM
has acquired an extensive understanding of Python due to
their significant exposure to this language during training. This
approach is similar to the grammar-based generation but is
more flexible and adaptable to various formats because Python
code is more expressive than traditional grammar. Given
that protocols are typically implemented using programming
languages, including their format handling logic, any protocol
that can be realized in one programming language can also
be represented in Python. Thus, this approach effectively
scales across various protocol formats. Python’s operational
capabilities allow accurate management of complex field de-
pendencies and logic—challenges that the LLM struggles with
when generating messages directly. Meanwhile, providing a
code compels the LLM to deliver concrete results for each
field, avoiding the common issue of producing abstract text or
descriptions when asked to generate messages directly. Python
was chosen as the generation language over C/C++ or others
because it is high-level and easy to read and write, enabling
the LLM to concentrate on format logic without falling into
low-level issues. Also, Python code can be executed directly
without compilation, making it ideal for subsequent interactive
refinement.

Figure [6] shows the prompt template for generation (i.e.,
Pgep in Line @ Here, we use Pg.,[S, D] to represent filling
the placeholders in the prompt template with the protocol
server information S and format details Dp. Specifically, we
instruct the LLM to generate a Python function named solu-
tion() that returns the required message in bytes format. First,
we present the function prototype with essential requirements
like avoiding external libraries and ensuring dynamic length
calculation through simple example implementation. Avoiding
external libraries makes the generated code self-contained and
executable without additional dependencies, simplifying exe-
cution. This is based on the fact that internal Python functions
are sufficient for protocol field computation and encoding.
Dynamic calculation is crucial for managing complex field
dependencies by delegating these computations to Python,
ensuring precise value generation while allowing the LLM to
focus on message logic. Then, using one-shot learning [29]], we
provide an example of generating an MQTT Publish message.
This method aids the LLM in understanding the task and
formatting its output correctly. Notably, this MQTT example

applies universally across the generation of different protocols
without modification. It serves primarily as a structural
template that demonstrates systematic message construction
methodology. Specifically, it shows the LLM how to construct
protocol messages through structured field construction, proper
encoding patterns (e.g., using to_bytes() rather than direct
value assignment), dynamic length calculation patterns (e.g.,
len()), and modular assembly approaches. The protocol-
specific semantics Dy are systematically prepared by the
knowledge base construction process and delivered on demand
via the [FORMAT INFORMATION] placeholder in the prompt
template. Finally, we use the same “QA” form to guide the
LLM to output the solution function based on the provided
detailed format information.

Provide a Python function named solution():
def solution():

This function returns the required message in bytes format with requirements:
1. No External Libraries: Do not use any external library.
2. Dynamic Length Calculation: Use ‘len()" to calculate length fields.

# Example implementation (update according to specific requirements):
message_data = b"Example message"

message_length = len(message_data)

# Return the message in bytes format

return message_length.to_bytes(2, 'big') + message_data

Instruction and
Function Prototype

# Q: Construct a MQTT Publish message.
# Solution using Python:
def solution():
message_type = 3 # Publish
qos_level = 0
retain = 0
flags = (message_type << 4) | (qos_level << 1) | retain
## Define variable header
# Define the topic name
topic_name = "sensors/temperature"
topic_name_encoded = topic_name.encode()
topic_name_length = len(topic_name_encoded) # length calculation expression
# Define message content
message_content = "Temperature is 25C"
message_content_encoded = message_content.encode()
# Calculate remaining_length using expression
remaining_length = 2 + topic_name_length + len(message_content_encoded)

def encode_remaining_length(length):
encoded_bytes = b""
while True:
encoded_byte = length % 128
length //= 128
# If there is more data to encode, set the top bit of this byte
if length > 0:
encoded_byte |= 128
encoded_bytes += bytes([encoded_byte])
if length == 0:
break
return encoded_bytes

# Encode remaining_length using MQTT variable length encoding
remaining_length_encoded = encode_remaining_length(remaining_length)

# Build the variable header

variable_header = topic_name_length.to_bytes(2, 'big') + topic_name_encoded
# Build the fixed header

fixed_header = bytes([flags]) + remaining_length_encoded

# Combine all parts to form the final packet

result = fixed_header + variable_header + message_content_encoded

return result One-Shot Example

# Q: For a [SERVER INFORMATION], construct a request with
[FORMAT INFORMATION]

# Solution using Python: Task Details

Figure 6: Prompt template for message generation with
placeholders. It instructs the LLM to generate a message using
code, showcasing an MQTT message generation example
for one-shot learning. This MQTT example is universally
applicable across different protocols without modification.

(3) Input Execution. The generated code C¥ is then exe-
cuted to produce the concrete message M, for ' (Line . Due
to complex protocol formats, this message might be invalid,
and we lack an automatic validation method. To address this
challenge, we use the protocol server, which understands the
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protocol, to provide feedback on the generated message. This
is based on the fact that a valid message should be accepted
by the server with appropriate responses, while an invalid
one would trigger an error response including explanatory
details or cause disconnection. To obtain in-depth semantic
feedback on My, we should ensure that the server is in a
state ready to accept F', as the protocol server is stateful and a
state mismatch could lead to request rejection before thorough
analysis. Therefore, we leverage the prefix message sequence
IIF to drive the server to the correct state before sending M.
Further, for a more precise analysis, we extract only response
R Mg directly related to My, instead of all the responses for a
concentration of I and M3 (Line [§). To illustrate this pro-
cess, we define the function Q> (I, M) as: Q>(Ilp, Mp) =
EXTRACT(SENDTOSERVER(S, Il - Mp), MF). Here, SEND-
TOSERVER sends the combined messages, consisting of the
prefix message I1 and the target message M, to server S and
receives the responses, while EXTRACT retrieves the portion
of the responses that directly relates to M.

(4) Verify and Refine. Given the server’s response RM;,
the LLM validates the response and determines whether the
generated message is valid (Line E]) If valid, the message My,
is recorded and used to construct the final input I (Lines [T0}
[[3). Otherwise, the algorithm iteratively refines the message
MZ (i indicates refinement steps) to address the issues iden-
tified by Rase (Lines .

Executing the above code generates the request: [GENERATED MESSAGE]. After sending it
to the server, the server [SERVER RESPONSE]. Analyze following these steps:
1. Check the response:
- If the response is as expected, answer 'yes'.
- If not, answer 'no' and then analyze as follows.
2. Identify the issue:
— Analyze the response. Identify which request fields might be causing issues.
- If response lacks actionable information, review each field to confirm correctness.
— Note: Pay special attention [ATTENTION FIELDS].
3. Modify the Python code to correct any issue found during the review.

Figure 7: Prompt template for message validation and refine-
ment using Chain-of-Thought with placeholders.

In this phase, we employ the LLM in a conversational
mode to iteratively refine messages by building on previous
interactions and providing continuous feedback. This approach
contrasts with most existing LLM-assisted testing research that
typically uses the LLM in a one-shot manner. During each
iteration, validation and refinement are conducted using three
inputs: the previously generated message M, the server’s
response R, , and its corresponding entry in the Oracle
Map (Lines O] [I9). The server response typically contains
error codes indicating specific meanings and details about
the error, such as missing values. The Oracle Map is a
dynamically constructed data structure that is initialized as
empty at the beginning of each protocol’s message gener-
ation process and progressively expanded as different mes-
sage formats are generated. Upon successful refinements, it
records the corresponding historical refinement experiences,
which subsequently inform the correction of analogous er-
rors in future iterations. It maps server responses to the
fields requiring special attention during refinement, defined
as OracleMap : R — {F1, F», ..., F,}, where R represents
the server response, and {Fy, Fy,..., F,} are the fields re-
quiring special attention. The map updates upon successful
refinements (Lines 24}{26), and the details are depicted later

in the refinement process. Figure [/| illustrates the prompt
template P4 s used for validation and refinement by filling
placeholders with these three parameters (Lines [9] [I9). It
employs a Chain-of-Thought (CoT) strategy to guide LLM
reasoning by breaking tasks into logical steps [30]. This
provides a clear and structured path for the LLM to follow:
first, check if the response is as expected; if not, identify the
unexpected elements and modify the code accordingly. When
the feedback lacks actionable information, review each field
in the original code and pay special attention to relationship
fields and fields requiring attention. The third step is essential
since the server response may lack clarity or simply reject
without detailed reasons using a reserved error code. In this
case, prior experiences stored in the Oracle Map can provide
valuable insights.

If the generated message is valid (Line [9), the algorithm
records this message My in the corresponding format entry in
the knowledge base, providing a concrete message for further
prefix message sequence preparation in future tasks (Line [IT).
It then constructs the final input I by concatenating the prefix
message IIr and the generated message M (Line . This
concatenation forms a complete and valid protocol message
sequence, ready for further fuzzing (Lines [I3{I3).

If the generated message is invalid (Line [T4)), the algorithm
enters the refinement phase with multiple iterations (Lines [T5}
[26). Each iteration mirrors the initial generation phase by
extracting the new code C’}; (Line , executing it to obtain
a refined message M (Line , and validating its response
R M (Line . This iterative process repeats until a valid
message is generated or the maximum refinement depth is
reached. Upon generating a valid message, the knowledge
base updates with this refined message M. (Line and
constructs the final input I for further fuzzing (Line 22}23).
These steps are similar to those in the initial phase but include
an additional operation of comparing original and refined
messages (Line [24). This comparison helps identify effective
code modifications, determining which fields were critical in
addressing error responses Rjpse and making the message
valid (Line [25). This information is updated to the Oracle
Map, and the details of this process are outlined below.

00i05i00i{03{FD|{--i--i1Ai--i--109
00:09:00{07 FD!OF |00i{1Ai00:{62 ;09

Figure 8: Alignment Example.

First, we identify the differences between the original mes-
sage M3 and the refined message M. Since these messages
can differ in length, direct comparison is challenging. Prefix or
suffix-priority comparisons are also ineffective due to possible
changes in the middle of the message. To address this, we
employ a technique called message alignment from protocol
reverse engineering [31], [32], [18], [33], [34]]. This method
aligns message bytes by adding padding bytes as needed to
uncover nuances while maximizing commonalities, as shown
in Figure |8| After alignment, the two messages are the same
length, allowing for a byte-by-byte comparison. We further
reflect this difference to the refine message M, represented
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as Ap(M%) (Line . Its corresponding calculation function
is defined as: ALIGNDIFF(Mg, Mj) = {i | Mg[i +5 j] #
M, [i pele jl, 0 < < len(M})}. Here, Mg, and My, are the

aligned versions of Mg and M}, respectively, and i ]»Kf J
denotes a mapping function that maps the index ¢ in the
original message M} to the index j in the aligned message
M. This mapping is determined by the alignment process.
The result A (M%) contains the indices of the bytes of M
showing differences. This helps identify which message bytes
were modified during refinement, offering insights into the
subsequent back-stepping of modified message fields.

Second, based on the identified byte differences A (M%),
we backtrack their corresponding fields. Since the message
MZ% is generated by the code C%, we analyze this code to
understand the involved field.

Var = Const | Expression
## Instrumentation code below
if type(Var) == int:

Var = PredefineIntValues
elif type(Var) == bool:

Var = not Var
elif type(Var) == str:

Var = StrMutator(Var)
elif type(Var) == bytes:

Var = BytesMutator (Var)

Figure 9: Instrumentation code for probe analysis.

To tackle this problem, we devise a lightweight probe
analysis on the refined code C'% (Lines [25/26). This method
identifies field value assignments in C'% and modifies them
individually to observe their effects on the solution() func-
tion’s outcome. Specifically, we analyze the Abstract Syntax
Tree (AST) of C’f, to extract the field assignments with
form s : Var = Const | Expression, where we mainly focus
on two statement types: (i) Const: simple assignment state-
ments using constant values; (ii) Expression: mathematical
expression-based assignments that may include functions like
len(). The former applies to standard fields, while the latter
pertains to relational fields. Other statements are ignored
as they typically involve message assembly (as illustrated
in Figure 2 in supplementary material). Let si,S2,...,S,
be the recognized statements in C%. For each statement
sj (j € [1,n]), we insert an instrumentation snippet after
s; to reassign the variable Var based on its type, as shown
in Figure 0] For example, if Var is an integer, we assign
it several predefined values, including O, 28 — 1, etc., to
reveal its effect on the output as much as possible. This is
similar to a boolean. If Var is a string or bytes, we mutate
its value while ensuring the length remains the same. This
prevents implicit changes to the length field and provides a
more precise root cause, addressing the over-tainting problem
faced by traditional taint analysis tools. Notably, these cases
already cover both Const and Expression assignment types
as the Expression result is also in an integer. Let CL]|s;||
donate the code with instrumentation inserted after statement
s;. We check if this modification is effective using the
condition underlined: PROBE(C'%, Ag(M})) = {Var(s;) |
((EXECUTE(CE||3; ) @ M) N Ap(M})) # 0, s; € Ch). If
true, it indicates that modifying s; affects bytes in Ag(M}),

showing that the field assigned by s; is related to the refine-
ments from Mp. to M. Then, the involved variable name
Var(s;) is added to the set of fields requiring special attention.
This process is repeated for all statements s; € C.

Example Workflow. To illustrate the generation process,
we present a concrete example using the BGP knowledge
base constructed in Figure [ Since the OPEN message is
typically the initial message in BGP communication, PSG
begins by generating an OPEN message with Multiprotocol
Extension Capability (with concrete example shown in
Figure [2). Figure [I0a] demonstrates the generation workflow.
PSG populates the prompt template from Figure [6] with BGP
server information and relevant RFC content (i.e., RFC 2858
Section 7 as recorded in the knowledge base). After obtaining
the initial generation code, PSG executes it to produce the
concrete message. Given that the OPEN message serves as the
first communication message and Multiprotocol Extension
Capability has no dependencies (as documented in the
knowledge base), PSG sends the generated message directly
to the server without requiring a prefix message sequence.
After receiving the server response, PSG incorporates this
feedback into the prompt template shown in Figure [/| and
instructs the LLM to validate the message. When the response
indicates message invalidity, the LLM initiates refinement.
However, since the server response only indicates an error
without specific details, the LLM systematically reviews the
generated code to verify consistency with the specification.
Through iterative refinement, the LLM eventually produces a
valid message. Figure [10b| illustrates both initial and refined
versions of the generation code. The initial error stemmed
from incorrect processing of the opt param_length field,
where the LLM erroneously added 2 bytes for the capability
code and length fields that were already included in the
capability value calculation. After several refinement iter-
ations, the LLM identifies and corrects this error, achieving
server acceptance.

Upon successful generation, PSG updates the knowledge
base by storing the generated message in the “Generated
Message” field of the corresponding format entry in Figure 4]
More importantly, PSG enriches the Oracle Map with insights
from this successful refinement. Given the server’s limited
error feedback, the LLM required multiple iterations to iden-
tify the root cause of this subtle error. Therefore, capturing
the refinement experience becomes crucial for guiding future
generation tasks. PSG employs message alignment to identify
differences between original and refined messages, discovering
only a single byte change from 0x08 to 0x06. To determine
which field corresponds to this modified byte, PSG applies
probe analysis to trace the field variable responsible for this
byte value and records this information in the Oracle Map
entry associated with the initial server response. This indicates
that when encountering similar errors in future generations,
the LLM can pay special attention to opt param_length.
Regarding locating the root cause in the code, another choice
is directly comparing the initial and successfully refined code.
However, this approach may introduce noise, as the LLM
tends to reconstruct code during refinement, potentially mod-
ifying the implementation of multiple fields even when their



TRANSACTION OF SOFTWARE ENGINEERING

corresponding values remain unchanged. Consequently, PSG
employs a more precise approach based on field-level probe
analysis to accurately identify root cause fields.

[...Instruction and One-Shot Example (as shown in Fig 6)]
EI] # Q: For BGP SERVER (server info...), construct a request with Multiprotocol capability (RFC 2858 Sec 7)

# Solution using Python:

def solution():
def bgp_open_message(asn, hold_time, bgp_id):
(see the initial version in Fig (b) )

Executing the above code generates request: 0xff...0250104fc0000b4c0a80a05080208010400020001
After sending it to the server, the server responds Oxffffffffffffffffffffffffffffffff0015030200

Analyze following these steps:

1. Check the response: - If the response is as expected, answer 'yes', else 'no’ ... (see Fig 7)

=

No. The response indicates an OPEN message issue. Since the "Unspecific" error subcode lacks precise
guidance, we need to verify each field against specifications and review the code generating the message... !

.'3 =p

Several Refinement Iterations

9 def solution():
def bgp_open_message(asn, hold_time, bgp_id):
.. (see the refined version in Fig (b) )
EI] Executing the above code generates request: 0xff...0250104fc0000b4c0a80a05080206010400020001
After sending it to the server, the server responds Oxffffffffffffffffffffffffffffffff001304 ... (see Fig 7)

Yes. Since the peer responded with a KEEPALIVE message, our OPEN message was correctly formatted and
'E' accepted. No further analysis or modification is needed. \//

Changed byte exposed by alignment
: Oracle Table

v, [T 1!, [semernespome] oaczo .
| Refined Msg, Ibal I 1 |
i Refined Mg < |

A

opt_param_length, [others...] ‘ ‘

‘ Attention Fields ‘

Changed variable in the code: opt_param_length |

(a) The generation workflow, including the conversation with the
LLM and update of the Oracle Map after successful refinement.

def solution():
def bgp_open_message(asn, hold_time, bgp_id):
# BGP OPEN Message Body
version = b'\x04' # Version: 4
my_as = asn.to_bytes(2, 'big”)
hold_time_bytes = hold_time.to_bytes(2, 'big)
bgp_identifier = bytes(map(int, bgp_id.split('.")))

@ Construct lines 4-7

# Optional Parameters for MP-BGP
capability_code = b'\x01'
capability_length = b'\x04"'

afi = b'\x00\x02' # AFI for IPv6
reserved = b'\x00'

safit = b'\x01' # SAFI for unicast
capability_value = afi + reserved + safi

capability = capability_code + capability_length + capability_value

@ Construct and assemble lines 13-18

# Optional Parameter @ Construct and assemble lines 9-12
- opt_param_length = len(capability) + 2 # 2 extra bytes for Cap. Code and Len<= Initial
+ opt_param_length = len(capability) <= After Refinement
opt_param_type = b'\x02' # Type 2 for Capabilities
opt_param = opt_param_type + opt_param_length.to_bytes(1, 'big') + capability

# Total Optional Parameters Length@ Construct line 8 and assemble lines 4-18
total_opt_params_length = len(opt_param)

total_opt_params = total_opt_params_length.to_bytes(1, 'big') + opt_param

# Construct the OPEN message

open_message = version + my_as + hold_time_bytes + bgp_identifier + total_opt_params

# BGP Header ® Construct lines 1-3 and assemble the whole message
marker = b'\xff' * 16 # Marker: All ones (16 bytes)

message_length = len(open_message) + 19 # 19 = 16 (Marker) + 1 (Type) + 2 (Length)
bgp_header = marker + message_length.to_bytes(2, 'big') + b'\x01' # Type 1 for OPEN

# Full BGP OPEN message
bgp_open_packet = bgp_header + open_message
return bgp_open_packet

# Configuration for ri1 (sender)

asn = 64512

hold_time = 180

bgp_id = "192.168.10.5"

# Generate the BGP OPEN message to be sent to r2
return bgp_open_message(asn, hold_time, bgp_id)

(b) The LLM-generated code with our explanatory annotation (refer
to Figure[2) to better understand the generation code. The code lines
of the initial version and the refined version are highlighted.

Figure 10: Generation workflow for BGP OPEN message with
Multiprotocol Extension Capability shown in Figure E}

IV. EVALUATION

In this section, we evaluate PSG from two aspects: (A1) the
effectiveness of the proposed seed corpus generation method,
and (A2) how the generated seed corpus enhances the per-
formance of state-of-the-art protocol fuzzers, which is PSG’s

ultimate goal. From these two aspects, we conduct a series of
experiments aiming to answer four research questions:
RQ1 How effective is PSG in generating more diverse seed
corpus? (Al, Section [[V-C))
How does each module contribute to the effectiveness of
PSG? (Al, Section
Can PSG help state-of-the-art protocol fuzzers explore
more code regions? (A2, Section
How effective are protocol fuzzers, when augmented
with PSG, in exposing new bugs in real-world protocol
implementations? (A2, Section

RQ2
RQ3

RQ4

A. Implementation

We implement a prototype of PSG in Python 3. The well-
known GPT-40 [19] is selected as the large language model.
The LLM usually accepts one hyperparameter temperature
€ [0, 1], which regulates the randomness and creativity. We use
temperature 0.5, a common practice to balance the diversity
and quality of the generated responses [35]. Besides, this
temperature setting of 0.5 is also used by recent related
work ChatAFL’s initial seed enrichment module [[12], which
also facilitates a better comparison in the evaluation. PSG
comprises two main components: (1) The knowledge base
construction module includes an RFC content crawler and
parser for processing and section splitting. It utilizes the LLM
to extract the message formats and the corresponding retrieved
content, organizing them in a YAML format shown in Figure 4]
In particular, the retrieval RFC content is stored separately
in text files due to its large size. (2) For the grammar-free
input generation module, we implement the message generator
and publisher. (i) The message generator follows Algorithm [T}
Specifically, we configure MaxRefineDepth (Line to two
since using the LLM in conversational mode with excessive re-
finement steps may result in context loss. We evaluate another
parameter MaxGenerationAttempts (Line [)) in Section
During program analysis in the refinement, we use Python’s
ast library to extract the abstract syntax trees for identifying
the desired assignment statements and their locations for
subsequent code instrumentation. (ii) The message publisher
interacts with the server by sending generated messages and
receiving feedback, including the responses or server behaviors
like connection shutdowns.

B. Evaluation Setup

Subjects. We select 7 widely-used public protocols as
targets for evaluation, including BGP, CoAP, SSH, DNS,
HTTP, RTSP, and FTP. We select these protocols based on
various characteristics. (i) Regarding format complexity, they
cover different types: HTTP, RTSP, and FTP are textual pro-
tocols; DNS is a mixed binary and textual protocol; whereas
the remaining are binary protocols. (ii) For their application
domain, they are typical protocols in different scenarios: BGP
is a routing protocol and is the backbone of the internet; HTTP,
DNS, and SSH are essential protocols for daily use; CoAP is
a widely-used IoT messaging protocol tailored for constrained
devices; RTSP is a streaming protocol used in multimedia
applications; FTP is a widely-used file transfer protocol. Their
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popularity and varied complexities help evaluate PSG’s effec-
tiveness and generalization capabilities. Furthermore, since we
use MQTT as the one-shot learning example in generation (see
Figure [6)), we exclude it from the subjects to avoid bias and to
show that this example’s generalization when PSG is applied
to other protocols.

To determine if the generated seed corpus can enhance
performance of existing protocol fuzzers when testing protocol
implementations, we further include representative implemen-
tations for these selected protocols (see Table , as referenced
in recent works [I12], [8]], [13], [36], [37]. We select at least one
implementation for each protocol. During seed generation for
each protocol, we use only one implementation as the target for
feedback acquisition. The first-row subjects in Table [[| for each
protocol are used here; e.g., cpp-httplib is the interaction target
for HTTP seed generation. In the following fuzzing phase, all
corresponding implementations are tested, e.g., cpp-httplib and
Lighttpd are tested based on the generated seed corpus. This
helps assess the generalization ability of the generated seed
corpus across various implementations of the same protocol.
Besides, for SSH implementation, we disabled its randomness
to ensure the reproducibility of the generated seeds, a com-
monly used method in protocol fuzzing community [38].

Table I: Detailed information about the selected subjects

Protocol | Subject #Stars | Description

HTTP cpp-httplib 13,416 | C++ header-only HTTP/HTTPS library.
Lighttpd 623 | Web-server for high-performance environments.
DNS SmartDNS* 8,615 | DNS server to obtain the fastest website IP.
Dnsmasq - | Lightweight, easy-to-configure DNS forwarder.
FRR* 3,507 | IP routing protocol suite.
BGP OpenBGPD* 58 | A lightweight and free BGP implementation.
GoBGP* 3,709 | BGP implementation for modern environments.
CoAP libCoAP 812 | CoAP implementation for IoT devices.
FreeCoAP* 135 | CoAP client/server and HTTP/CoAP proxy.
RTSP GStreamer* 218 | Media-handling components.
LIVESSS 781 | Multimedia streaming using open protocols.
FTP ProFTPD 547 | Highly configurable FTP daemon for Unix
SSH OpenSSH 3,392 | Implementation of the SSH protocol (version 2)

* * means we have uncovered new bugs in that project (see Table [V).
#Stars: Number of stars on GitHub.

Basic Seed Corpus. To prepare the basic seed corpus (i.e.,
the version not enhanced by PSG) for each subject, we
utilize off-the-shelf messages encoded in test suites and ex-
ample utilities provided by the protocol implementations.
Specifically, we exclude unit test suites containing incomplete
messages (e.g., only headers without bodies, or specific fields
for targeted function testing) because reusing these message
snippets would require constructing corresponding complete
messages by filling missing fields and handling complex field
dependencies, which is non-trivial and error-prone. To dump
the test messages encoded in the code, we follow a typical
practice: executing the off-the-shelf test server and client util-
ities or examples while capturing their exchanged messages,
as outlined in [14]. To better demonstrate the necessity of a
more systematic approach in generating a more comprehensive
seed corpus (i.e., the goal of PSG), we combine seed corpus
derived from multiple implementations into one initial set. For
example, when testing HTTP implementations cpp-httplib and
lighttpd, we merge their respective seed corpus together to

form a relatively more diverse seed corpus as a starting point
for subsequent fuzzing.

Base Protocol Fuzzers. To evaluate the effectiveness of
the generated seed corpus in enhancing fuzzing, we compare
the protocol fuzzer’s performance using both basic and PSG-
enhanced seed corpus. We select AFLNet [13]], ChatAFL [12],
[39], and Snipuzz [[10] as our baseline fuzzers, representing
state-of-the-art mutation-based approaches with distinct tech-
nical innovations and fuzzing paradigms. Specifically, AFLNet
incorporates state feedback mechanisms to conduct state-aware
fuzzing; ChatAFL leverages LLM’s internal knowledge for
protocol grammar acquisition and performs grammar-based
mutations; and Snipuzz employs on-the-fly message format in-
ference through message probing to identify grammatical roles
of message bytes. Moreover, AFLNet and ChatAFL are grey-
box fuzzers, while Snipuzz is a black-box fuzzer that operates
without internal instrumentation. This paradigmatic diversity
allows us to assess the generalizability of our approach across
different fuzzing paradigms. For ChatAFL, we ensure fair
comparison by using the same LLM (GPT-40) as PSG. Since
ChatAFL primarily targets textual protocols, we adapt it to
support binary protocols by presenting message content in
hexadecimal format, as many binary bytes are unprintable
in standard text representation. Similarly, we adapt Snipuzz
to support binary protocols and UDP-based protocols. While
other fuzzers exist, our selected tools are already advanced
and represent diverse technical approaches to protocol fuzzing
optimization, allowing us to demonstrate how high-quality
seed corpus generation enhances existing protocol fuzzers
across different methodological foundations.

Evaluation Metrics. First, we evaluate PSG’s generated
seed corpus itself using Format Coverage: identifying seman-
tically and syntactically correct seed inputs and calculating
unique formats covered compared to all documented formats
in RFCs. Then, we evaluate PSG’s fuzzing performance en-
hancement using two widely-accepted metrics: Code Coverage
and Bug Detection. For the code coverage, we use both branch
coverage and line coverage, which are the most commonly
used metrics in the fuzzing community.

C. Generation Effectiveness (RQI)

First, we evaluated the knowledge base construction mod-
ule’s ability to extract message formats from RFCs, which
is the basis for later generation. By manual inspection against
RFCs and TANA registries, we confirmed that PSG accurately
extracted the formats for evaluated protocols, with format
numbers shown in Table

Table II: Format coverage (#§;Z§;ledF§ f;fggs) achieved by

basic seed corpus and PSG under different generation attempts
n (denote as PSG@n)

Protocol (Total) |  Basic | PSG@1| PSG@2| PSG@3| PSG@4 | PSG@S5
BGP (82) 10 (12%) | 55 (67%) | 66 (80%) | 76 (93%) | 82 (100%) | 82 (100%)
COoAP (32) 21 (66%) | 22 (69%) | 25 (78%) | 29 (91%) | 32 (100%) | 32 (100%)
DNS (86) 17 20%) | 79 (92%) | 84 (98%) | 86 (100%) | 86 (100%) | 86 (100%)
HTTP (171) 32 (19%) | 166 (97%) | 171 (100%) | 171 (100%) | 171 (100%) | 171 (100%)
RTSP (43) 14 (33%) | 42 (98%) | 43 (100%) | 43 (100%) | 43 (100%) | 43 (100%)
FTP (63) 30 (48%) | 61 (97%) | 63 (100%) | 63 (100%) | 63 (100%) | 63 (100%)
SSH (132) 41 31%) | 67 (51%) | 87 (66%) | 102 (77%) | 119 (90%) | 132 (100%)
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Then, we further evaluated the grammar-free input gener-
ation module’s ability to produce messages for the desired
formats under different MaxGenerationAttempts settings, a pa-
rameter (Line [d]in Algorithm[I)) that limits generation attempts
per message format. As shown in Table for HTTP and
RTSP, with simple key-value pair structures, PSG achieved
mostly 100% coverage within 1 attempt. The results on
FTP demonstrate comparable performance, with high coverage
achieved within 1 attempt owing to its straightforward textual
command syntax. In contrast, BGP, CoAP, and SSH require
4, 4, and 5 attempts , respectively, to achieve 100% coverage
due to their more intricate formats involving complex field re-
lationships and message assembly requirements. Nevertheless,
empowered by the refinement process, PSG still achieved high
format coverage in the initial attempt across all protocols. On
average, PSG requires only 1.39 attempts per message format,
showcasing both efficiency and accuracy.

Additionally, Table M| presents the format coverage statistics
for the basic seed corpus. These seeds exhibit low format
coverage, averaging only 32.7% across all protocols. This lim-
ited coverage underscores the importance of PSG’s generation
capability, which utilizes the protocol specifications as the
analysis source and applies an automated method to analyze
these specifications to achieve more comprehensive protocol
format coverage.

Message Comparison. To better understand the charac-
teristics of PSG-generated messages, we compare them with
those from real-world traffic. Our investigation reveals that for
message formats that both approaches contain, PSG-generated
messages and those from real-world traffic are roughly similar,
especially regarding the validity of key fields (e.g., Type field),
since invalid values for key fields would be rejected by the
server while PSG-generated messages have all been validated.
When examining these shared formats more closely, notable
differences can be observed in the following aspects:

(1) Minimal data payloads: PSG-generated messages typ-
ically contain concise data fields, whereas real-world traffic
often carries extensive payload data to fulfill actual com-
munication needs. This characteristic can enhance fuzzing
efficiency because data-related fields typically trigger less
complex parsing logic than other structural fields. Since most
protocol fuzzers employ byte-level mutation without grammar
awareness, extensive mutations on lengthy data content yield
diminishing returns while consuming computational resources.

(2) Simplified optional field combinations: PSG-generated
messages typically contain fewer combinations of optional
fields within individual messages. In real-world traffic, a
single message may combine multiple optional fields, while
PSG typically treats each optional field as a distinct format
and generates them individually across different messages.
When optional fields are parsed independently in protocol
implementations, combining them within one message does
not trigger additional code logic, and fuzzing efficiency re-
mains unaffected. Conversely, when different optional fields
interact and their combinations activate more complex code
paths, fuzzing efficiency may be impacted. However, classical
mutation operators employed by fuzzers, such as crossover,
which splice segments from different test cases, can help

generate additional combinations to mitigate this limitation.
Figure illustrates both characteristics using HTTP
protocol examples. The PSG-generated message demon-
strates minimal payload content and only essential head-
ers, while the real-world traffic exhibits chunked transfer
encoding with multiple optional header fields (Connection,
Transfer-Encoding) combined within a single message.

(a) PSG-generated HTTP message (b) HTTP message from real-world traffic

POST /upload HTTP/1.1

Host: www.example.com

Content-Type: application/x-www-form-
urlencoded

POST /cgi.pl?post-len HTTP/1.1

Host: www.example.org

Connection: close

Content-Type: application/x-www-form-
urlencoded

abc Transfer-Encoding: chunked

20123456789 [omitted...]

Figure 11: Comparison between PSG-generated and real-
world HTTP messages

D. Ablation Study (RQ2)

Method. To answer RQ2, we conducted an ablation study
to evaluate the contribution of PSG’s two modules (mq:
knowledge base construction and ms: grammar-free input
generation) towards increasing the format coverage. Since mo
relies on my, we developed such two variants: (i) PSG®:
Both m; and mg are disabled. We directly instruct the LLM
to generate as many diverse messages as possible without
specific planning guidance from RFC knowledge. This high-
lights the importance of supplementing the LLM with task-
specific RFC knowledge despite its potential exposure from
training data. (ii)) PSG™!: only enabling m;. i.e., using
m1’s knowledge base for generation planning and knowledge
augmentation. This variant directly generates message hex
streams without intermediary code generation and refinement
process introduced in mg. (iii) PSG™*+2: full version of PSG
with both modules enabled. For a fair comparison, PSG™1+2
and PSG™ use generation attempts as five for each message
format (following Section [[V-C). As for PSG®, due to a lack
of structured planning, we instruct it to produce an equivalent
number of messages as other variants.

Table III: Format coverage achieved by each PSG variant for
each protocol under identical generation attempts of five.

Protocol (Total) ‘ PSG° ‘ PSG™ ‘ PSG™1+2
BGP (82) 19 (23%) | 22 (27%) | 82 (100%)
CoAP (32) 11 (34%) | 15 @7%) | 32 (100%)
DNS (86) 18 21%) | 40 (47%) | 86 (100%)
HTTP (171) 40 (23%) | 157 (92%) | 171 (100%)
RTSP (43) 16 (37%) | 28 (65%) | 43 (100%)
FTP (63) 49 (78%) | 61 (97%) | 63 (100%)
SSH (132) 28 (21%) 42 (32%) | 132 (100%)
Average 34% 58% 100 %

Results. Table shows the format coverage achieved by
the three variants. Without knowledge base augmentation,
PSG® achieves only 34% average format coverage due to
limited protocol awareness and understanding. After providing
augmentation, PSG™'’s result increases to 58%, with par-
ticularly notable improvements on textual protocols: HTTP
and RTSP. This underscores the importance of comprehensive
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Figure 12: The average code branches covered (y-axis) by baseline fuzzers (AFLNet, ChatAFL, and Snipuzz) and PSG
enhanced fuzzers (AFLNet”SG, ChatAFLPSS | and SnipuzzPS%) over 24 hours (x-axis) on each subject across ten repeated runs.

protocol overviews and task-specific knowledge augmentation.
However, even with the planning and RFC augmentation,
PSG™ doesn’t reach 100% because the complex message
formats make direct message generation error-prone. This is
evident from PSG™'’s limited improvement on the binary
protocols BGP, CoAP, and SSH, as well as mixed protocol
DNS. PSG addresses this by introducing code generation as
an intermediary step along with a refinement process guided
by server feedback and prior success, enabling the LLM to
focus on format logic over peripheral details and gradually
refine towards the desired message.

E. Code Coverage Analysis (RQ3)

Method. To answer RQ3, we use PSG-generated seed
corpus as input for baseline fuzzers AFLNet, ChatAFL,
and Snipuzz, donated as AFLNetPS6 ChatAFLPSC, and
Snipuzz"SG, and compare their performance against the ver-
sions using the basic seed corpus (see Section [[V-B]. Besides,
since ChatAFL already incorporates a seed corpus enrichment
module, we substitute this module with PSG-generated seed
corpus in ChatAFLPSC to foster a comparison.

Results. Figure [12] illustrates the branch coverage trends
across all subjects, while Table [[V] presents the line coverage
data. On average, AFLNet?S6 ChatAFLFSC, and SnipuzzPSG
achieve (11.2%, 9.4%), (9.5%, 8.6%), and (10.3%, 8.4%)
higher (branch, line) coverage than their respective base-
lines. All results are statistically significant per the Mann-
Whitney U test [40]. We exclude GoBGP results due to
its Go language implementation, which is not supported by
GCov. Without high-quality diverse seed inputs, baseline
fuzzers easily reach coverage plateaus in early stages. In
contrast, the diverse seed inputs generated by PSG activate
varied program logic, enabling fuzzers to further explore
more code branches and continuously increase code cover-
age. Notably, ChatAFLPSC outperforms ChatAFL across all
subjects, indicating that PSG’s seed corpus is more effec-
tive than ChatAFL’s seed enrichment module, which relies
solely on the LLM’s internal knowledge without augmen-
tation—resulting in low diversity—and generates messages
directly without optimization strategies—Ileading to low accu-
racy. While ChatAFL—a state-of-the-art protocol fuzzer with
advanced strategies—outperforms AFLNet on most subjects,
this advantage diminishes when using PSG-generated seeds,
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highlighting the critical role of a diverse seed corpus in
fuzzing. Besides, as for Snipuzz, a black-box protocol fuzzer
equipped with advanced format inference capabilities, PSG
still enables higher code coverage. This occurs because cer-
tain message formats differ substantially from one another,
and even with format-aware mutation strategies, it remains
difficult to transform a message from one existing format to
another unseen format, as valid mutations typically require
simultaneous changes to multiple fields, as demonstrated in
our example in Figure 2]

Table IV: The average line coverage for each tool on each
subject after 24 hours.

| AFLNet AFLNet"S¢ | ChatAFL ChatAFL'S® | Snipuzz  Snipuzz’¢

cpp-httplib 803 938 873 946 719 836
Lighttpd 3935 4060 3935 4072 3691 3826
SmartDNS 6656 8004 7179 8274 6432 6936
Dnsmasq 1725 1831 1731 1862 1700 1729
FRR 8206 8982 8287 9089 8536 8783
OpenBGPD 1890 2113 1901 2196 1918 2052
libCoAP 3446 3581 3296 3576 2818 2980
FreeCoAP 1039 1193 1116 1223 820 1000
GStreamer 3555 3825 3632 3850 2952 3149
LIVE555 5232 5831 5108 5675 3281 3447
OpenSSH 7528 7746 7528 7737 6689 7328
ProFTPD 11273 11826 11423 11968 9799 11021
Improv. +9.4% +8.6% +8.4%

F. Bug Detection (RQ4)

AFLNet™C and ChatAFLPSC found 10 new bugs in the
widely-used implementations of evaluated protocols (see Ta-
ble [V). Eight of them have been assigned CVE identifiers,
all of which received CVSS scores of High or Critical,
highlighting their severity.

Without being equipped with PSG, AFLNet, ChatAFL, and
Snipuzz only found bug#3, bug#5, and bug#6 in Table [V]
These subjects are well-maintained and have undergone ex-
tensive community testing. FRR, Gstreamer, and GoBGP had
even been incorporated into OSS-Fuzz [41] and have been
continuously fuzzed for a long time. However, PSG still helps
fuzzers to expose new bugs in these projects. The column
T Exposure indicates each bug’s exposure duration from intro-
duction to discovery. Some bugs persisted for up to 9 years
due to inaccessible code paths caused by inadequate initial
seed corpus. With a diverse seed corpus generated by PSG,
these hidden bugs were revealed, demonstrating its efficacy in
guiding fuzzers to previously unexplored code regions where
hidden bugs may reside.

V. DISCUSSION

Validation of the Generated Seed Corpus. As shown in
Section in the evaluation, the inputs generated by PSG
may sometimes be invalid due to protocol complexity and the
unpredictable nature of the LLM. For complex protocols, more
generation attempts are needed to achieve a high format cover-
age, which consequently may incur more invalid inputs within
the seed corpus. Despite this, such defects are manageable
during fuzzing, as many fuzzers employ feedback mechanisms
like coverage feedback to prioritize interesting inputs that
increase coverage. Thus, invalid inputs are quickly filtered out

Table V: Statistics of 10 previously-unknown bugs discovered
by PSG-enhanced fuzzers in extensively tested subjects

Subject | Bug Type Threats | Tpuposure | CVE (CVSS Score)
FreeCoAP | Out-of-bounds Read DoS | 61 Months | 2024-31029 (High)
FreeCoAP Null Pointer Dereference DoS, ID | 108 Months | 2024-31030 (Critical)
FreeCoAP | Null Pointer Dereference DoS | 108 Months | 2024-40493 (Critical)
FreeCoAP | Buffer Overflow RCE, DoS | 111 Months | 2024-40494 (Critical)
OpenBGPD | Undefined Behavior DoS | 45 Months | 2024-48082 (Critical)
FRR Null Pointer Dereference DoS, ID | 41 Months | CVE Requested
GoBGP Buffer Overflow DoS, ID | 72 Months | 2023-46565 (High)
GoBGP Buffer Overflow DoS, ID | 10 Months | CVE Requested
SmartDNS | Integer Behavior DoS, MC | 56 Months | 2024-42643 (High)
GStreamer | Assertion Failure DoS | 62 Months | 2024-44331 (High)

* DoS: Denial of Service; RCE: Remote Code Execution;
ID: Information Disclosure. T gzposure: Exposure time.

by these mechanisms. Furthermore, it should be noted that
invalid inputs are not inherently uninteresting as they represent
slight variations from valid ones and could potentially trigger
unexpected behaviors in the target implementation.

Dependence on Server Feedback Quality. Our approach’s
validation and refinement capabilities for generated messages
rely on the quality of server responses. When generated
messages contain errors, servers that provide rich, detailed
error information enable a rapid and effective refinement pro-
cess. However, the informativeness of these responses varies
significantly across different implementations. While some
implementations offer comprehensive error details, specifying
exactly which fields or values are problematic, others provide
only basic error indicators without actionable diagnostic infor-
mation. This variability in feedback quality might impact our
technique’s effectiveness, as low-quality feedback that lacks
specific error details can potentially impede the refinement
process and require more generation attempts.

Dependence on Specification Quality. The -effective-
ness of our seed generation approach is inherently tied
to the completeness and clarity of protocol specifications.
Our method fundamentally relies on well-structured, high-
quality RFC documentation to extract comprehensive pro-
tocol knowledge. For protocols with ambiguous or poorly
maintained documentation-particularly proprietary protocols-
the LLM’s semantic understanding may be compromised,
potentially undermining the effectiveness of our approach.
Furthermore, protocols that undergo rapid evolution without
timely documentation updates also present ongoing challenges.
Future research directions could mitigate these documentation
limitations by developing hybrid approaches that combine
specification analysis with direct inference of message formats
from implementation source code, thereby reducing depen-
dence on external documentation quality.

Benefits for Generation-Based Fuzzers. PSG mainly
targets enhancing mutation-based fuzzers, with its outcome
directly applicable to these fuzzers. The generated seed corpus
can also benefit generation-based fuzzers like BooFuzz [7] and
Peach [3]. These fuzzers require a user-defined protocol model
that includes data models specifying the message formats.
Such data models need to define not only the abstract-level
format—comprising field names, octets, and types—but also
concrete field values [42]], [43]], which are usually crafted by
referring to captured network traffic and thus also suffer from
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the same diversity issue. In such cases, the messages generated
by PSG can provide more diverse references for creating these
data models.

VI. RELATED WORK

Mutation-Based Protocol Fuzzing. Recent research in pro-
tocol fuzzing mainly focuses on optimizing the fuzzing stage,
such as mutation strategies and test throughput. AFLNet [13]
and NSFuzz [44] enhance mutations using state feedback,
while Nyx-net [45] improves throughput with snapshot fuzzing
to reduce overhead. The seed corpus is crucial for mutation-
based fuzzers as it guides fuzzing exploration, especially
in complex protocols. Our work complements these fuzzing
optimizations by enhancing the seed corpus foundation to
maximize their potential.

Generation-Based Protocol Fuzzing. These fuzzers, in-
cluding BooFuzz [7] and Peach [3], rely on a user-defined
protocol model detailing message formats (data models) and
valid message sequences (state model). Creating this model
requires a deep understanding of the protocol, which is
challenging. These fuzzers generate new inputs by strictly
following this protocol model, making its quality crucial for
their effectiveness,as revealed by [8]. Our work focuses on
enhancing mutation-based fuzzers, but the generated seed
corpus can also benefit generation-based fuzzers by providing
valuable references for constructing the data models.

LLM Assisted Fuzzing. Recent advancements in the LLM
have shown their potential in enhancing fuzzing [46], [47],
such as test case generation [48], [49], [S0], [12] and test
harness generation [S1f], [S2f], [S3l]. TitanFuzz [49] utilizes
the LLM to generate test cases for deep learning libraries.
Fuzz4All [50] uses the LLM to mutate existing test cases
for compiler testing. ChatAFL [12] uses the LLM to enhance
the seed corpus and mutation strategies. These efforts focus
on text-based test cases without involving complex binary
formats and rely solely on the internal knowledge of the
LLM. However, recent studies indicate they may lack in-
depth domain knowledge [54], [S5] and thus fall short of
providing a diverse seed corpus. Therefore, various methods
have been proposed to integrate domain-specific expertise [S6],
[571], [58]]. One related work is LLMIF [59], which augments
the LLM with specifications for fuzzing Zigbee protocols. It
separates the generation of header and body and represents
extracted message formats in JSON. While effective for Zigbee
characteristics, extending this approach to diverse protocol
families still requires modifications to accommodate varied
protocol requirements and formats. In contrast, PSG intro-
duces a protocol-agnostic framework that leverages code gen-
eration as an intermediate step, seamlessly handling complex
field dependencies and diverse message formats across the full
spectrum of protocols from binary to text-based.

VII. CONCLUSION

This paper presents PSG, which leverages the LLM to
generate diverse seed corpus for enhancing protocol fuzzing.
Rather than relying exclusively on the intrinsic knowledge of

the LLM, PSG systematically organizes and retrieves exten-
sive protocol knowledge for task planning and precise supple-
mentation when generation. Based on this, PSG exploits the
LLM’s proficiency in code programming to use it as an inter-
mediate step to bridge the gap between natural-language RFCs
and obscure protocol-language messages, thereby ensuring
adaptability across various protocols. Meanwhile, lightweight
program analysis of the generated code and server feedback
synergistically guide PSG to perform an iterative refinement
process to improve the generation accuracy. Our experiments
show that PSG can effectively generate valid seed inputs for
diverse protocols and enhance the performance of the state-
of-the-art protocol fuzzers.
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