
1

Vulnerability Detection of ICS Protocols
Via Cross-State Fuzzing

Feilong Zuo, Zhengxiong Luo, Junze Yu, Ting Chen, Zichen Xu, Aiguo Cui, Yu JiangB

Abstract—Industrial Control System (ICS) employs complex
multi-state protocols to realize high-reliability communication
and intelligent control over automation equipment. ICS has been
widely used in various embedded fields, such as autonomous
vehicle systems and power automation systems, etc. However,
in recent years, many attacks have been performed on ICS,
especially its protocols, like the hijacks over Jeep Uconnect
and Tesla Autopilot autonomous systems, also the Stuxnet and
DragonFly viruses over national infrastructures. It is important
to guarantee the security of ICS protocols.

In this paper, we present Charon, an efficient fuzzing platform
for the vulnerability detection of ICS protocol implementations.
In Charon, we propose an innovative fuzzing strategy that
leverages state guidance to maximize cross-state code coverage
instead of focusing on isolated states during the fuzzing of ICS
protocols. Moreover, we devise a novel feedback collection method
that employs program status inferring to avoid the restart of ICS
protocol at each iteration, allowing for continuous fuzzing.

We evaluate Charon on several popular ICS protocol im-
plementations, including RTPS, IEC61850-MMS, MQTT, etc.
Compared with typical fuzzers such as AFL, Polar, AFLNET,
Boofuzz, and Peach, it averagely improves branch coverage
by 234.2%, 194.4%, 215.9%, 52.58%, and 35.18% respectively.
Moreover, it has already confirmed 21 previously unknown
vulnerabilities (e.g. stack buffer overflow) among these ICS
protocols, most of which are security-critical and corresponding
patches from vendors have been released accordingly.

Index Terms—Vulnerability Detection, ICS Protocol, Fuzzing

I. INTRODUCTION

INDUSTRIAL Control System (ICS) refers to the network
infrastructure where a huge amount of data and signals

are exchanged between hardware endpoints at high speed
and reliability. It develops from the origin Computer Control
System (CCS), to the following Distributed Control System

Manuscript received April 07, 2022; revised June 11, 2022; accepted July
05, 2022. This article was presented at the International Conference on
Embedded Software (EMSOFT) 2022 and appeared as part of the ESWEEK-
TCAD special issue.

This research is sponsored in part by the NSFC Program (No. 62022046,
92167101, U1911401, 62021002, 62192730), the National Key Research and
Development Project (No. 2019YFB1706203, No. 2021QY0604) and the
MIIT Project (Design of intelligent networked vehicle based on the SOA
central control).

Feilong Zuo, Zhengxiong Luo, Junze Yu, and Yu Jiang are with the KLISS,
BNRist, School of Software, Tsinghua University, Beijing 100084, China
(e-mails: zuofl19@mails.tsinghua.edu.cn, luozx19@mails.tsinghua.edu.cn,
yujz21@mails.tsinghua.edu.cn, jiangyu198964@126.com).

Ting Chen is with the University of Electronic Science and Technology of
China, Sichuan 610054, China (e-mail: brokendragon@uestc.edu.cn).

Zichen Xu is with the School of Mathematics and Computer Science,
Nanchang University, Jiangxi 330000, China (e-mail: xuz@ncu.edu.cn).

Aiguo Cui is with the Godel Lab, Huawei Technologies Co., Ltd, Shanghai
200001, China (e-mail: ag.cui@huawei.com).

Yu Jiang is the corresponding author. Feilong Zuo and Zhengxiong Luo
contributed equally to this research.

(DCS), and finally the Fieldbus Control System (FCS) in
recent years[1][2]. Modern ICS employs complex multi-layer
and multi-state digital communication protocols to realize the
intelligent control of automation equipment. It has been widely
used in various embedded fields, such as autonomous vehicle
systems, power automation systems, robot control systems, etc.
However, along with the development and increasing com-
plexity of ICS, more times of attacks have been maliciously
performed on ICS components[2], especially the multi-state
protocols, which realize the connectivity of the whole ICS.
For example, the vulnerabilities in autonomous systems of
Jeep Uconnect and Tesla Autopilot once gave the chance for
attackers to control the whole vehicle. Also, viruses such as
Stuxnet[3] and DragonFly[4] have caused serious damage to
national infrastructures. Hence, it is significantly important to
guarantee the security of ICS protocols.

Fuzzing is one of the most effective techniques for security
vulnerability detection in real-world programs and protocols.
Given a system under test (SUT), fuzzers generate a large
number of test inputs (i.e. ”seeds”) and inject them into
the SUT to uncover errors. Based on how seeds are de-
rived, fuzzers can be roughly divided into two categories:
1) mutation-based and 2) generation-based. Mutation-based
fuzzers, such as American Fuzzy Lop (AFL) [5], leverage
coverage feedback to find ”interesting” seeds that increase pro-
gram coverage and use them as a basis for further mutations,
such as random bit flips or dictionary replacement. Generation-
based fuzzers, like Peach [6], Sulley [7], and Boofuzz [8],
generate sequences of syntactically valid structured inputs with
the help of manually written model files that specify the state
model and the data models of input seeds in each state.

Despite their effectiveness, as proven by the sheer amount
of bugs found in libraries and command-line utilities such as
libjpeg and libxml, protocols such as SSL, FTP, etc., these
state-of-the-art fuzzers encounter two major challenges when
deployed on multi-state ICS Protocol implementations:

The first is how to cover the diverse processing logic
for handling state transition in ICS Protocols. Many ICS
protocols, like RTPS and IEC61850-MMS, use an ad-hoc
decentralized publishers-subscribers model and any nodes who
wish to participate in the network must go through multiple
states and corresponding packets of different structures are
sent in order. However, state-of-the-art fuzzers such as AFL,
AFLNet[9], and Peach, are only able to focus on explor-
ing code in isolated states by feedback-driven mutation or
structure-aware generation. They ignore the abundant diverse
situations in state transitions.

The second is how to improve the speed and throughput

2

of ICS protocol fuzzing when using the feedback mechanism.
State-of-the-art fuzzers instrument the target program by in-
serting the flag of coverage collection or simply restarting it
for each iteration in order to collect coverage information [10],
[6], [9]. This is difficult for ICS protocols, as they are
usually complex and distributed. Therefore, no distinct flags
can be provided at the code level after processing packets.
What’s more, restarting the entire system of the under-test
ICS protocol is not feasible considering that it is commonly
time-consuming to initialize.

To overcome these challenges, we propose Charon, an
efficient fuzzing platform for vulnerability detection of ICS
protocol implementations. 1) Charon utilizes cross-state
guidance to maximize code coverage in state transitions for
ICS protocols during the fuzzing procedure. For a single state
A, it constantly evolves the corresponding packet to explore
as many conditions as possible in this state. Once a new
condition CA is found, Charon propagates this new prior
condition to a successive state B. We take all conditions that
have been discovered in state B as SetB, then for any condition
CB ∈ SetB, the state transition from A to B through CA
to CB is brand-new. Additionally, more legal conditions of
B can be explored due to this new prior condition in A.
The more diverse ways of transition between states, the more
codes are covered, which results in more possibilities to find
vulnerabilities. 2) Moreover, Charon integrates an intelligent
program status inferring module which is able to infer the
moment when a packet is fully consumed by the target ICS
protocol and then notify Charon to collect the feedback.
Therefore, it realizes the requirement of feedback collection
while maintaining the continuous running scenario of ICS
protocols instead of frequent restarts, greatly improving the
overall fuzzing efficiency.

We evaluated Charon on several popular ICS protocol
implementations, like RTPS, IEC61850-MMS and MQTT,
etc. Results show that, within 24 hours, Charon gains
more code branches than state-of-the-art fuzzers, including
the most widely used general fuzzer AFL [5] and four
domain-specific fuzzers designed for protocol Polar [10],
AFLNET [9], Boofuzz [8], and Peach [6], averagely by
234.2%, 194.4%, 215.9%, 52.58%, and 35.18%, respectively.
Furthermore, Charon has confirmed 21 previously unknown
security-related severe vulnerabilities that may cause serious
consequences if maliciously exploited. We reported the details
of these 0-day vulnerabilities to the vendors and all corre-
sponding patches have been released.

In summary, our paper makes the following contributions:

• We propose a novel fuzzing strategy for multi-state ICS
protocols which realizes both cross-state guiding and
continuous fuzzing.

• We implement Charon, which includes a cross-state
guiding module to maximize code coverage in state
transitions, and a program status inferring module to keep
the initial continuous running scenario of ICS protocols.

• We apply Charon to widely-used ICS protocol imple-
mentations, and it outperforms the state-of-the-art fuzzers
in terms of both code coverage and bug detection.

II. BACKGROUND

A. Multiple States in ICS Protocols

ICS protocols are leveraged to dispatch commands and
exchange messages between numerous endpoints in ICS.
To better manage these participants and handle the huge
amount of data along with signals, ICS protocols tend to be
designed with complex implementations and multiple intra-
system states. These states need to exactly reflect the status
of endpoints or connection instances. Moreover, they stipulate
what the participants or endpoints should do at specific time
points. Here we use the example of the RTPS protocol to
detailedly illustrate the multiple states in ICS protocols.

RTPS (Real-Time Publish Subscribe) protocol [11], pro-
posed by Object Management Group (OMG) [12], is the
standard interoperability protocol for Data Distribution Ser-
vice (DDS) [13]. In recent years, RTPS has been adopted as
the communication protocol in many automated driving sys-
tems (burgeoning and typical application of ICS), for example,
Autoware [14], Apollo [15] and Adaptive AUTOSAR [16].
It satisfies autonomous driving’s requirement for real-time
and high-bandwidth communication. RTPS uses a Publishers-
Subscribers (P/S) network model where some nodes are pub-
lishers which only publish content while others are subscribers
who subscribe to publishers with the topic of interest. RTPS
automatically encapsulates and delivers packets from publish-
ers to subscribers when publishers publish content, without
specifying destinations.

RTPS Domain

RTPS Participant

RTPS Group

RTPS Endpoint

1
0...*

RTPS Writer RTPS Reader

RTPS Structure

1
0...*

1
0...*

 RTPS
Packets

Publisher Subscriber

1

0...*

1

0...*

Fig. 1. Entity structure of RTPS protocol.

Entity Structure of RTPS. Figure 1 shows how entities
are organized in RTPS. In the structure of RTPS, entities are
separated by domains, which provide independent communi-
cation spaces. Only entities in the same domain are allowed
to communicate with each other. A domain contains a set of
participants each of which is a container of endpoints sharing
common properties, especially those in the same address
space. Endpoints may be grouped according to specific aims,
e.g. a few endpoints can be combined into a group working as
a publisher or subscriber. Endpoints are the basic communica-
tion units in RTPS. There are two kinds of endpoints: RTPS
writer and RTPS reader. Writers can send RTPS packets to
readers via underlying network protocols such as UDP.

3

Multiple States of RTPS. RTPS is designed in a decen-
tralized ad-hoc model where publishers and subscribers can
automatically discover each other and match up for commu-
nication by going through multiple states. Figure 2 presents a
simplified example of a publisher and a subscriber successfully
establishing communication. The publisher and subscriber are
in different participants, so the two participants must first rec-
ognize each other in the network, which is called Participant
Discovery. Then, they exchange information of their inner
endpoints, which is called Endpoint Discovery. The two stan-
dard sub-protocols that specify these two discovery procedures
are called Simple Participant Discovery Protocol (SPDP) and
Simple Endpoint Discovery Protocol (SEDP).

Participant 2
Subscriber

SPDP

SEDP

Participant 1
Publisher

SPDP Built-in
Participant Writer

SPDP Built-in
Participant Reader

SEDP Built-in
Publications Writer

SEDP Built-in
Subscriptions Reader

Application-defined
Writer

SPDP Built-in
Participant Writer

SEDP Built-in
Publications Reader

SEDP Built-in
Subscriptions Writer

SPDP Built-in
Participant Reader

Application-defined
Reader

Mutlicast
Address

Data Publish

Fig. 2. A simplified example of an RTPS publisher and a subscriber, involving
the state of SPDP and SEDP, and Data Publishing.

In participant discovery, each participant uses two built-in
endpoints to exchange information, namely the SPDP built-
in participant writer and reader. The participant writer peri-
odically sends an SPDP packet, which includes information
such as name, unicast address, etc., to pre-configured ad-
dresses (e.g. a multicast address in this example) to announce
its existence. The participant reader persistently listens to the
same addresses to detect the existence of other participants.
After the two participants have received SPDP data from each
other, they recognize each other and then come into endpoint
discovery. The publisher utilizes a built-in publications writer
to send an SEDP packet, consisting of topic, data type,
address of application-defined endpoint to the subscriber’s
built-in publications reader. Similarly, the subscriber’s built-
in subscriptions writer delivers the packet of itself to the
publisher’s built-in subscriptions reader. If the publisher and
subscriber share the same topic and data type, they match up
and the communication is established between the application-
defined writer in publisher and the application-defined reader
in subscriber. Then the publisher can publish specific contents
and the corresponding packet is sent through the channel.

A state refers to the situation when a publisher or subscriber
has received and consumed an RTPS packet. Therefore, from
this simplified example, we conclude that an RTPS publish-
er/subscriber has at least three ordered states: SPDP state,
SEDP state, and Data Publishing/Subscribing state. Besides
RTPS, many other ICS protocols are also equipped with

similar multiple states for communication management, such
as MQTT, IEC61850-MMS, and so on.

B. Generation-based fuzzing

We use a popular generation-based fuzzer, Peach, to demon-
strate how generation-based fuzzer works in detail. Peach
is widely used to fuzz diverse targets ranging from file-
processing programs to network protocols in industrial control
systems. To use Peach to fuzz a target system, test engineers
are required to create a Pits file which defines the state model
and the data models for each fuzzing state, configures the I/O
interface, the ways to start and monitor the target system, etc.

State I (Init) State II State III

System
Under
Test

Action 1

Action 2

Action 3

DataModel A

DataModel B

DataModel C

Publisher

...

Monitor

...

State IV

Fig. 3. A simplified example of a Pits model file used in Peach Fuzzer.

Figure 3 shows a simplified structure of Pits file and
demonstrates some of the relationships between these structure
elements. Peach uses DataModel as the base template to
generate seeds. Test engineers are required to provide a
detailed description of each data element in DataModel,
including name, type, length, default values, etc. Peach utilizes
a StateModel to manage the process of fuzzing. Each
State represents one step of fuzzing which includes multiple
actions, such as output actions and input actions. Taking
commonly-used output action as an example, Peach generates
a bitstream according to the generation rule of the action’s
DataModel. Then it is consumed by a configured Peach
publisher, for example a UDP or TCP publisher. Finally, the
publisher encapsulates the bitstream into a packet and sends it
to the under-test program that is controlled by a specific local
or remote monitor.

The strategy which Peach uses to fuzz a target system
based on the aforementioned Pits file is briefly described in
Algorithm 1. First, Peach analyzes the given Pits file to ac-
quire necessary data including the user-defined StateModel,
DataModel, selected publisher, monitor and other parame-
ters (line 2). Then, Peach initiates the fuzzing loop. It performs
fuzzing from an initial State and moves on to the next until
finishing the last one. Multiple actions can be taken in each
state. For each commonly-used output action, Peach derives
a seed based on the generation rule of the action’s inner
DataModel and then the seed is published to the system
under test (SUT) (lines 8-10). If the monitor finds the SUT
crashes during the fuzzing loop, it records the whole sequence
of seeds in this iteration for crash analysis (lines 14-15).

4

Algorithm 1: Fuzzing Algorithm of Peach Fuzzer
Input: P: Input Pits file
Input: S: System under test
Output: C✗ : Set of seeds sequences crashing S

1 C✗ ← ∅
2 PITSANALYZER(P)
3 while iteration not exceeds limitation do
4 SeqSeed ← EMPTYSEQUENCE()
5 State← GETINITSTATE(P)
6 while State! = null do
7 for Action ∈ State do
8 D ← GETINNERDATAMODEL(Action)
9 Seed← SEEDGENERATION(D)

10 PUBLISHTOSUT(Seed)
11 SeqSeed ← SeqSeed

⋃
{Seed}

12 State← GETNEXTSTATE(State)

13 Results← RESULTANALYZER(S)
14 if CRASH(Results) then
15 C✗ ← C✗

⋃
{SeqSeed}

III. CHALLENGES IN FUZZING ICS PROTOCOLS

Both mutation- and generation-based fuzzers have achieved
success in fuzzing libraries, command-line utilities, file pro-
cessing programs, etc. However, when they attempt to fuzz
ICS protocols, we need to overcome two major obstacles.

(1) Maximize code coverage for the state transition
processing logic in ICS protocols. Commonly, ICS protocols
work with multiple states that specify the inner status of
endpoints and connection instances. For example, in the case
of RTPS protocol, as described in Section II-A, an RTPS
publisher/subscriber has at least three ordered states: SPDP
state, SEDP state and Data Publishing/Subscribing state. How-
ever, state-of-the-art protocol fuzzers are only able to focus on
exploring code coverage in isolated states[6][9].� �
<StateModel name="RTPS" initialState="fuzz_SPDP">
<State name="fuzz_SPDP">
<Action type="output" publisher="multicast">
<DataModel ref="SPDP_mutable" />
</Action> ...
<Action type="changestate" ref="fuzz_SEDP" ...>
</State>
<State name="fuzz_SEDP">
<Action type="output" publisher="multicast">
<DataModel ref="SPDP_immutable" />
</Action> ...
<Action type="output" publisher="unicast1">
<DataModel ref="SEDP_mutable" />
</Action> ...
<Action type="changestate"ref="fuzz_DATA_SUB"..>
</State>
<State name="fuzz_DATA_SUB"> ... </State> ...
</StateModel>� �

Listing 1. Snippet StateModel of Fast-RTPS

Take the fuzzing procedure of RTPS protocol implemen-
tation as an example. Listing 1 presents a snippet of a
StateModel in the Pits file of Fast-RTPS when using Peach
for vulnerabilities detection. During fuzzing, Peach operates

as an RTPS publisher and the system under-test is a sub-
scriber (usually the RTPS subscriber is the under-test program
in RTPS). Three fuzzing states are described by this Pits file,
corresponding to the three fuzzed states of the subscriber:
SPDP, SEDP, and Data Subscribing. In each fuzzing state,
several output actions are taken while only one action with mu-
table data model is used for exploring code coverage and prior
actions with immutable ones are ”bedding” data models that
help under-test subscriber pass prior states. Take fuzz_SEDP
as an example, SEDP_mutable is the coverage-exploring
action and SPDP_immutable is the bedding action. Some
variants of AFL, such as AFLNET [9], splice all RTPS packets
together as a binary stream and fix some bits of it to help the
program under-test reach the destination state, which is similar
to how Peach operates. If the input packet of former states are
also configured as mutable, the under-test protocol tend to be
simply abled to reach the target state due to the malformed
former packets.

P1 P2 P3 P4 P5

E1 E2 E3 E4 E5 E6

state
SPDP

state
SEDP

Fig. 4. State transitions which Peach covers (solid arrow).

However, both of them ignore the diverse situations in state
transition. RTPS is a protocol with multiple states, and in each
state there are various conditions about different configura-
tions, values of inner data structures, etc. State transitions from
A to B are diverse due to the diversity of both A and B. But in
the aforementioned fuzzing strategy, the conditions in previous
state A are limited to one or a few and are not flexible. Figure
4 briefly shows this limitation. Take an example, the conditions
of state SPDP range from P1 to P5 while those of SEDP range
from E1 to E6. As for Peach, it takes the bedding immutable
data model with the condition of P1 to drive RTPS to the
SPDP state and enter the target SEDP state. With the fixed
P1, the available conditions of SEDP may limited to E1 to
E4. Therefore, Peach is only able to cover the transitions from
(P1, E1) to (P1, E4) (as show in solid arrow in this figure),
omitting other diverse transitions such as (P2, E2), (P4, E4),
etc,. Moreover, the logics of condition E5 and E6 in SEDP are
also unreachable. State-of-the-art fuzzers are challenged that
how to direct fuzzing to cover the abundant cross-state code
coverage in state transitions.

We use the example of Listing 2 to clearly illustrate the
difference between common branch coverage-guided fuzzing
and the cross-state fuzzing strategy we proposed. This ex-
ample presents a function used to parse an SEDP packet
and then construct the EDPEndpoint in the SEDP state
of RTPS protocol. The first code fragment from line 3
to line 5 is an if-judgement constraint and its variable is
’m simpleEDP.usePubWriterANDSubReader’, a variable that
has no relation with the former SPDP state and only relies on
the configuration specified in SEDP packet. Branch coverage-

5

guided fuzzing is suitable for covering the logics in this
fragment by conducting mutations on SEDP packet. However,
the second and third code fragments at lines 7-14 and lines
16-18 are totally different. The second fragment is a switch-
judgement and the third one is an if-judgement, but they all
take variables of properties in the former SPDP state. These
fragments are clearly related to state transitions. As a result,
for common fuzzers, the value of these variables tend to be
limited, thus these state transition-related code logics are not
covered enough during fuzzing.� �

1 void createEDPEndpoint(CDRMessage *EDPMessage,
PDPParticipant mp_PDP, /*...*/){

2 //... Construct m_simpleEDP from EDPMessage ...
3 if(m_simpleEDP.usePubWriterANDSubReader==true){
4 // ...
5 }else{/*...*/}
6 // ...
7 switch(mp_PDP->getRTPSParticipantAttributes().

throughputController){
8 case PDPControl::MaxBytesPerPeriod: //...
9 case PDPControl::NormalBytesPerPeriod: //...

10 if(m_simpleEDP.readAttr.kind == KEY){/**/}
11 else {/*...*/}
12 case PDPControl::BytesPerPeriodNotControl: //
13 // ...
14 }
15 // ...
16 if(mp_PDP->getRTPSParticipantAttributes().

allocation.initial > 1){
17 // set attributes of m_simpleEDP
18 }else{/*...*/}
19 // ...
20 }� �

Listing 2. Code snippet from RTPS Protocol

(2) Maximize the throughput for execution of ICS
protocols. During practice, we find that state-of-the-art fuzzers
such as AFLNET [9] are not suitable for the continuous
running scenario of ICS protocols, and the restarting of target
protocols in each iteration is time consuming.

In order to use feedback for optimization and guidance,
state-of-the-art fuzzers commonly collect code coverage of the
under-test program. Existing fuzzers collect such information
through mainly two methods. The first method is to instrument
the program to insert a flag for coverage collection, such
as AFL’s persistent mode and Libfuzzer. However, this is
not suitable for ICS protocols because they usually run as
background multi-processes thus no distinct flags are provided
at code level after they finish processing packets. The other
method is to collect coverage after the program under-test has
exited, such as AFL. This is more versatile as the fuzzer
can kill the processes of the program, collect its coverage
and then restart the program for the next iteration. However,
restarting the target ICS protocol is sub-optimal considering
the complexity of bringing up such a system, thus periodic
restarts significantly affect fuzzing efficiency.

IV. SYSTEM DESIGN

We present the framework of Charon in Figure 5.
Charon leverages the module of Peach Pits file introduced
in Section II-B, to describe state model and data models. To
realize the cross-state continuous fuzzing of ICS protocols, we

design two innovate modules. One is the cross-state guiding
module which maximizes coverage in state transitions, and
the other is the program status inferring module that keeps
the continuous scenario of the target ICS protocol.

Under Test ICS Protocol Implementation

 Feedback
Collection

Monitoring

Interesting
Seeds Pool

Inner-state
Exploration

Cross-state
Propagation

BUG

Status
Judgement

New Seed

Fuzzing

Cross-state Guiding Program Status
Inferring

Data Model

Fig. 5. Overview of Charon. The cross-state guiding module helps to
maximize code coverage in state transitions, and the program status inferring
module keeps the continuous running scenario of the target ICS protocol.

At the very beginning, Charon uses the generation rule of
Pits file to generate a seed S according to the DataModel and
outputs S to the endpoint, which is previously injected with
lightweight instrumentation to acquire coverage information.
Then Charon utilizes the program status inferring module to
judge whether the subscriber has finished processing S . If the
module judges that S has been fully consumed, Charon then
collects code coverage information of S. Next, Charon
compares the newly retrieved coverage to its previous coverage
set (initially empty) to conclude whether S achieves new
coverage. If so, S it is added to the interesting seeds pool.
Charon adopts an innovative cross-state guiding module

that uses state guidance to maximize cross-state code cov-
erage during state transitions. For each state, the inner-state
exploration submodule in Charon constantly evolves the
corresponding protocol packet to explore as many conditions
as possible. In Charon, a new condition in a state corresponds
to a new interesting packet generated or mutated from the data
model of this state, as Charon uses packet-level feedback and
one packet belongs to exactly one state. Once a new condition
in a prior state is found by a produced protocol packet, the
cross-state propagation submodule propagates this new prior
condition to its following state. New sequences of packets will
be generated to attempt to cover the code in state transition
between these two states. Moreover, this new condition in
the prior state will help to explore more available new legal
conditions in its following state.

The newly derived ICS protocol packet of the cross-state
guiding module is then injected to the under-test ICS protocol
endpoint. Afterwards, Charon returns to program status in-
ferring module and continues its fuzzing loop. As the program
status inferring module is able to infer the time point at which

6

the endpoint has finished processing the packet, the target
ICS protocol does not need to repeatedly restart to collect
feedback. Therefore, during the whole fuzzing process, it only
restarts when it crashes due to a potential bug, which allows
for continuous running thus improves the fuzzing efficiency.

A. Cross-State Guiding

Inner-state Exploration Submodule. Charon utilizes the
inner-state exploration submodule to explore as many condi-
tions as possible in each state of the under-test ICS protocol
endpoint. Those interesting seeds that uncover new condi-
tions are saved in the interesting seeds pool. During inner-
state exploration, we use branch coverage to detect any new
conditions in each state and inject lightweight instrumentation
at branch points of the under-test ICS protocol to obtain it.
Therefore, to exploring state A, we can use interesting ICS
protocol packets which correspond to state A to speed up
the exploration process. This is based on the evolutionary
algorithms adopted by many mutation-based fuzzers. However,
existing mutation-based fuzzers conduct bit-level mutations
which are likely to destroy the integrity of ICS protocol
packets, while Charon is aware of their detailed structure
so we perform structure-aware mutations on elements.

1 void foo(int x) {

2 __instrumentation(); // A
3 if (x) {

4 __instrumentation(); // B
5 do_stuff(x);
6 } else {

7 __instrumentation(); // C
8 do_other_stuff(x);
9 }

10 }

Fig. 6. Example code snippet abstracted from instrumented program.

To identify interesting conditions in each fuzzing state,
as Figure 6 shows, we invoke instrumentation function
__instrumentation() (lines 2, 4, 7) at the branch point
of each basic block. For example, the symbol B represents
the basic block from line 3 to 6, where the instrumentation
is injected at line 4. When the instrumentation is executed,
a branch ID is calculated according to both the previous
block and the current block. If a generated valid protocol
packet covers any new branches or visiting some branches
with notable changes of times during the parse process, we
takes it as interesting packets in this state.� �
<DataModel name="Package_SPDP">
<Block name="head">
<String name="Magic Number" size="32" .../>
<Block name="Version">
<Number name="major" size="8" value="02" .../>
<Number name="minor" size="8" value="02" .../>
</Block> ...
</Block> ...
</DataModel>� �

Listing 3. Example snippet DataModel of RTPS protocol

Algorithm 2: Inner-state exploration algorithm
Input: Pool: Interesting seeds pool
Input: State: State which is current under fuzzing
Output: Setseeds: Set of generated input seeds

1 Setseeds ← EMPTY()
2 D ← GETINNERDATAMODEL(State)
3 Type← GETDATAMODELTYPE(D)
4 ListIS ← PICKINTERESTINGSEEDS(Type, Pool)
5 for seed ∈ ListIS do
6 Elements← SELECTELEMENTS(seed,D)
7 for e ∈ Elements do
8 seed← RUNMUTATION(e, seed)

9 Setseeds ← ADD(Setseeds, seed)

10 return Setseeds

We demonstrate how inner-state exploration submodule
works in Algorithm 2. We denote State as the current under-
test state, the inner-state exploration submodule initially refers
to the Pits model to find the mutable DataModel D of
this state (line 3). Then it selects a list of interesting seeds
corresponding to type D from the seeds pool (lines 3-4). Af-
terwards, for each interesting seed in the list, several fields of
the seed are randomly chosen to be mutated with its concrete
element type in mind, which ensures input integrity (lines
6-8). Listing 3 shows an example snippet DataModel of
RTPS protocol, each element in the data model has a specific
type which determines the mutation strategies. The model also
provides other information about elements, such as the size,
default value, etc,. After a series of mutations, the exploration
submodule produces a list of seeds with higher quality.

Cross-state Propagation Submodule. Charon leverages
the cross-state propagation submodule to maximize cross-
state code coverage. Once a new condition CA in state A is
found by a seed SA, the cross-state propagation submodule
propagates this new prior condition to the following state
B. Take all discovered valid conditions of B as SetB, then
for any condition CB ∈ SetB, the state transition from A
to B in the way (CA, CB) is considered new. Charon then
triggers the transition by combining (SA,SB), where SB is
the corresponding seed for uncovering CB. Different conditions
in each state represent different configurations and inner data
structure values. As a result, we are more likely to execute
more code branches when utilizing different transitions of
states. In addition, more legal conditions of state B could be
explored due to this new prior condition in state A.

We present an overview of the cross-state propagation
submodule in Algorithm 3. Two types of seed sequences
are generated due to the cross-state propagation: (i) Seqα,
generated to trigger the transition from (CA, CB) by com-
bining (SA,SB); (ii) Seqβ , generated to explore more legal
conditions of B. When seed SA covers any new conditions in
state A, the cross-state propagation submodule first refers to
the state model to find the following state B and extracts the
output sequence of state B as SeqB (lines 1-2). To generate
Seqα, this submodule acquires an interesting seed SB which

7

Algorithm 3: Cross-state propagation algorithm
Input: Pool: Interesting seeds pool
Input: A: Current state under fuzzing
Input: SA: Seed covering new condition in state A
Output: Seqα: Sequences of generated packets (in

type α)
Output: Seqβ : Sequences of generated packets (in

type β)
1 B ← GETNEXTSTATE(A)
2 SeqB ← EXTRACTDATAMODELSEQ(B)
3 DA,DB ← GETINNERDATAMODEL(A,B)
4 SB ← GETINTERESTINGSEED(DB, Pool)
5 Seqα, Seqβ ← EMPTY()
6 for D ∈ SeqB do
7 if D = DA then
8 Seqα, Seqβ ← APPEND(Seqα, Seqβ , SA)

9 else
10 if D = DB then
11 Seqα ← APPEND(Seqα, SB)
12 Seeds← INNERSTATEEXPLORE(Pool,D)
13 seed← CHOOSEONE(Seeds)
14 Seqβ ← APPEND(Seqβ , seed)

15 else
16 seed← GENERATEBYDEFAULT(D)
17 Seqα, Seqβ ← APPEND(Seqα, Seqβ , seed)

18 return Seqα, Seqβ

has covered valid condition in state B (line 4) from the pool.
Then we loop over traversing the sequence of data models. If
the loop reaches the mutable data model in A while immutable
in B, both Seqα and Seqβ take SA as the output seed (lines
7-8). Then if it reaches the mutable data model in state B, SB
is adopted as the seed to Seqα while a new seed generated
in the inner-state exploration submodule is adopted to explore
more conditions in state B (lines 10-14). Other data models
in SeqB are generated as the seeds with default value for both
Seqα and Seqβ .

P1 P2 P3 P4 P5

E1 E2 E3 E4 E5 E6

state
SPDP

state
SEDP

Fig. 7. State transitions Charon additionally covers.

Taking the example of RTPS protocol, we use Figure 7
to present the influence of cross-state guiding strategy in
Charon. Compared with Figure 4 in Section III, Charon is
able to cover the diverse state transitions between SPDP and
SEDP such as (P2, E1), (P2, E4), (P4, E2), etc, with the help
of Seqα. Moreover, more legal conditions of state SEDP, like
E5 and E6, are covered due to Seqβ .

B. Program Status Inferring

To establish effective continuous fuzzing and cross-state
guiding, it is critical to evaluate the improvement of code
coverage achieved by each generated ICS protocol packet
in each state. Thereafter, the fuzzer should know when the
protocol finishes processing each packet S for each execution
so that the coverage feedback of S can be retrieved for the
interesting seed measurement.

Protocol
Packet …Protocol

Packet
Protocol
Packet

ICS Protocol
Fuzzing

Coverage Check

Network Check Log Check

Program Status Inferring Feedback Collection

Branch Count

Value Calculation

Fig. 8. How program status inferring module works during fuzzing.

Figure 8 clearly presents the role that program status in-
ferring module plays during the whole ICS protocol fuzzing
procedure. Between sending each generated protocol packet,
Charon invokes this module to monitor the packet parsing
process. Three checking strategies are used for interring,
where the main one is runtime coverage check. And the other
two assistant strategies are respectively network check and
log check. When all the three checking strategies reach the
conclusion that the packet has been fully consumed, Charon
moves on to feedback collection of this packet and then the
generation of next ICS protocol packet.

Algorithm 4: Program status inferring algorithm
Input: StateModel: State model of the target protocol

1 for state ∈ StateModel do
2 S ← CROSSSTATEGUIDING(state, StateModel)
3 FEEDTOICSPROTOCOL(S)
4 Covα ← EMPTY()
5 while True do
6 Covβ ← COLLECTCOVERAGE()
7 if Covβ =

Covα && NOPACSEND() && NOLOGADD()
then

8 break

9 else
10 Covα ← Covβ
11 WAITINTERVAL()

12 PERFORMFEEDBACK(S, state, Covα)
13 MOVETONEXTSTATE(state, StateModel)

We follow the procedure of Algorithm 4 to conduct status
inferring of ICS protocols. After feeding packet S to under-test
ICS protocol endpoint (line 6), we reuse the coverage track
component, as the content in shared memory is able to extract
the program execution flow exercised by S. By conducting
consecutive coverage collections with a specified interval, the

8

execution flow exercised by S in the interval can be revealed
in the coverage change of adjacent results. Assuming that two
sequential results in the collection sequence are represented
as Covα and Covβ respectively, Covβ can be considered as
the final coverage result of S only if Covβ doesn’t trigger
any new coverage compared with Covα. Moreover, during the
interval, if S is fully consumed, the ICS endpoint should not
generate any more logs related to state change. Additionally,
no more response packets would be sent from the under-test
endpoint when it becomes relatively stable after consuming
S (line 7). This approach is lightweight and effective, with
negligible overhead instead of sacrificing time to restart the
whole system of ICS protocol.

C. System Implementation

Charon mainly consists of two innovative modules: the
cross-state guiding module to maximize code coverage in
state transitions, and the program status inferring module
to keep the continuous running scenario of ICS protocols.
We implemented the kernel modules of Charon mainly in
C# (6500+ lines of code in total), and also utilized several
underlying tools. We leverage the structure of Pits file from
Peach (community version 3.0.202) to describe state model
of fuzzing and data models corresponding to states. During
continuous cross-state guided fuzzing, to measure branch
coverage of under-test ICS protocol implementation, we apply
light-weight instrumentation technique which is based on the
LLVM Clang compiler (version 12.0.0) [17].

V. EVALUATION

We performed repeated experiments to evaluate the per-
formance of Charon. To investigate whether the continuous
fuzzing strategy with cross-state guidance improves the ef-
fectiveness and efficiency of fuzzing, we compared Charon
with five state-of-the-art fuzzers in Section V-B, including one
general fuzzer (AFL [5]) and four fuzzers mainly designed and
optimized for protocol (Polar [10], AFLNET [9], Boofuzz [8],
and Peach [6]). The results of these experiments demonstrate
the improvement in fuzzing effectiveness. Finally, we show
the vulnerability detection capabilities of Charon and list the
previously unknown vulnerabilities exposed by Charon in
Section V-C. Specifically, we evaluate Charon to answer the
following research questions:

RQ.1 Is Charon more effective than state-of-the-art fuzzers
when augmented with the proposed cross-state contin-
uous fuzzing strategies?

RQ.2 Can Charon expose more previously unknown vulner-
abilities than those state-of-the-art fuzzers?

A. Experiment Setup

We evaluated the performance of Charon on several open-
source implementations of ICS protocol implementations, in-
cluding FastRTPS [18], CycloneDDS [19], FreeRTPS
[20], OpenDDS [21], IEC61850-MMS[22], and MQTT[23].
These real-world projects are widely used, and they come with

varying degrees of complexity. Table I shows the full list of
projects and their information. Note that their size is calculated
in thousands lines of code.

TABLE I
DESCRIPTION OF RTPS IMPLEMENTATIONS

Implementation Size Brief Description

FastRTPS 599K Adopted in many sectors, e.g. Robotic Operating
System (ROS) [24], FIWARE Incubated GE.

CycloneDDS 85K A part of Eclipse IoT project widespreadly used in
IoT industry, also a tier-1 middleware for ROS2.

FreeRTPS 36K A free, portable, minimalist, work-in-progress
RTPS implementation in ROS software stack.

OpenDDS 2206K Developed by Object Computing, one of the most
famous DDS and RTPS implementation.

IEC61850-MMS 112K A standard communication protocol used in the
electric industry. It’s based on COTP and so on.

MQTT 51K A lightweight IoT network protocol based on TCP/IP
for embedded asynchronous communication.

We used branch coverage and the number of unique bugs
detected as metrics. The first metric is commonly used to mea-
sure the effectiveness of fuzzers while the second indicates the
ability to detect vulnerabilities. Our experiments are conducted
on a host machine running Ubuntu 20.04 with 128GiB of
memory and two Intel ® Xeon ® Gold 6148 CPUs @ 2.40GHz
with 80 logical cores. We ran each fuzzing tool on each project
for 24 hours in independent one-core KVM environments to
isolate the resources of both network and operation system,
and repeated each experiment 5 times to establish statistical
significance of results.
Charon and Peach started with the same input data models

while AFL, Polar and AFLNET was initiated with same
binary streams of these data models as seeds. Specifically, for
AFLNET, as it requires state codes from protocol packets to
distinguish different states while no such codes exist in our
selected protocols, so we refer to the solution of the official
repository of AFLNET [9] and use the hash value of respond
packet to identify state code in this tool. Moreover, Boofuzz
was seeded with the same structure information of under-test
ICS protocols with Charon and Peach. To precisely present
the influence of input packets generated by fuzzers, we did
not count the code branches related to the initialization of
ICS protocols. In addition, Charon, Peach, and Boofuzz all
operate in non-restart mode during our experiments. We use
the non-restart mode of Peach and Boofuzz to show the best
performance of them when compared to out tool Charon.

B. Efficiency of Coverage Improvement

Figure 9 shows the average performance of each fuzzing
tool on different ICS protocol implementations over 24 hours.
Each curve in this figure is the average result taken over 5
runs. We collected and summarized the results of average
covered branches and calculated the enhancement of Charon
compared with other state-of-the-art fuzzers into Table II. The
cells in first line of each ICS protocol implementation in this
table represent the average code branches each fuzzer achieved
respectively while those in the next line correspond to the
percentage of the increase of code branches Charon achieved
compared with each fuzzer. At the bottom of the table, we
calculate the average improvement Charon achieved among
all these implementations compared with each fuzzer.

9

(a) FastRTPS (b) CycloneDDS (c) FreeRTPS

(d) OpenDDS (e) MMS (f) MQTT

Fig. 9. Average results of the covered branches of each fuzzing tool on different ICS protocol implementations within 24 hours.1

TABLE II
AVERAGE NUMBER OF CODE BRANCHES ACHIEVED BY EACH FUZZING

TOOL IN 24 HOURS.

Subject AFL Polar AFLNet Boofuzz Peach Charon

FastRTPS 12147 15310 13100 18114 15952 25656
+111.2% +67.58% +95.85% +41.64% +60.83% -

Cyclone 6250 7066 6444 14091 14158 16539
+164.6% +134.1% +156.7% +17.37% +16.82% -

FreeRTPS 682 788 659 1160 1008 1389
+103.7% +76.27% +110.8% +19.74% +37.80% -

OpenDDS 7360 8559 8270 19901 34431 49998
+579.3% +484.2% +504.6% +151.2% +45.21% -

MMS 1682 1886 1691 4328 5152 7256
+331.4% +284.7% +329.1% +67.65% +40.84% -

MQTT 2202 2157 2389 4019 4321 4736
+115.1% +119.6% +98.24% +17.84% +9.60% -

AVG +234.2% +194.4% +215.9% +52.58% +35.18% -

From Figure 9 we can infer that at the beginning of fuzzing,
all of these fuzzers achieved new branches quickly. However,
after a short period of time (about 1-2 hours), the baseline
fuzzers (AFL, Polar, AFLNET, Boofuzz, and Peach) slowed
down and gradually reached a state where they rarely explored
new branches.

For AFL and it’s variants, they are unaware of the structure
of ICS protocol packets and therefore they can only con-
sider them as raw binary streams and randomly flip, copy,
add or delete some bits to derive new packets. These blind
modifications are likely to destroy the structure of packets

and thus the malformed output packets tend to fail sanity
checks and cannot reach the actual program logic. More
significantly, they all restart under-test ICS protocol after each
iteration, which greatly slows down the fuzzing procedure. As
a result, though they have coverage feedback to help evolve
seeds, their performance was not such satisfactory. For Peach
and Boofuzz, despite the awareness of ICS protocol packet
structure, they can only generate syntactically valid seeds as
it adopts a black-box fuzzing strategy and no feedback can
guide it. Moreover, they only focus on exploring coverage
in isolated states as introduced in Section III. Therefore,
they outperformed AFL, Polar and AFLNET but there still
remained a big gap with Charon in performance. Charon’s
branch coverage continuously improves for a longer period of
time due to the packet-level feedback in inner-state exploration
and the effective cross-state propagation fuzzing strategy.

As shown in Table II, Charon achieved more code
branches than AFL, Polar, AFLNET, Boofuzz, and Peach on
all of the selected ICS protocol implementations. Specifically,
its branch coverage improved 234.2% over AFL on average,
proving both the importance of input structure awareness and
the continuous fuzzing strategy. In particular, in OpenDDS, the
most complex among these implementations we chose, AFL
only achieved less than 10 thousand branches while Charon
achieved nearly 50 thousand. We see similar patterns among
the results of the other ICS protocol implementations. As to
AFL’s variants Polar and AFLNET, though new strategies and
optimizations are introduced, the improvements to AFL were
not satisfactory, and Charon outperforms them. Compared
with Boofuzz and Peach, Charon improved 52.58% and
35.18% on average with the novel cross-state guiding strategy
which attempts to cover as more cross-state processing logic

10

as possible to improve the code coverage (Boofuzz and Peach
were set to run in their non-restart mode to ensure their
best performance and guarantee the fairness of the conducted
contrast experiments).

TABLE III
COMPARISON BETWEEN CHARON AND CHARON−

Tool FastRTPS Cyclone FreeRTPS OpenDDS MMS MQTT
Charon 25656 16539 1389 49998 7256 4736

Charon− 23327 15678 1321 46262 6419 4502

-9.08% -5.21% -4.90% -7.47% -11.54% -4.94%

AVG -7.19%

In order to evaluate the effectiveness of specific components
of Charon, we designed an additional contrast experiment
between Charon and its cut version without program status
inferring module (we name it Charon−). This additional ex-
periment was also repeated 5 times over the above-mentioned
six selected ICS protocol implementations for 24 hours and
it also uses the number of program code branches as the
evaluation metric. We present the result of this experiment
in Table III where the average branches achieved by Charon
and Charon− on each ICS protocol are filled in the cells.
Without program status inferring module, Charon has to
perform with frequent restarts to collect branch coverage
corresponding to each generated ICS protocol packet and then
conduct feedback. Table III shows that among all these six
protocol implementations, Charon− achieved fewer branches
compared with Charon in 24 hours (ranging from 4.90%
on FreeRTPS to 11.54% on IEC61850-MMS). The overall
reduction percentage is 7.19%. The results prove the program
status inferring strategy that avoids frequent restart during
ICS protocol fuzzing effectively improves overall performance
within the limited fuzzing time budget.

Answer to RQ1. It is reasonable to conclude that the
cross-state fuzzing guidance and continuous fuzzing
strategy for ICS protocols are valuable and effective in
practice. It is able to improve the branch coverage in
protocol implementations within a limited time budget.

C. Previously Unknown Vulnerabilities
The amount of code coverage affects the potential for a

fuzzer to detect vulnerabilities. A fuzzer can only detect any
vulnerbilities when the code segment it resides in is executed.
Due to the great performance Charon achieved in code cov-
erage as presented in Section V-B, in practice, Charon was
able to expose some previously unknown vulnerabilities in all
four of the under-test ICS protocol implementations, greatly
exceeding our expectation. We summarized these new vulner-
abilities in Table IV and also presented the results of the other
state-of-the-art fuzzers.

All the five tools performed fuzzing accompanied with Ad-
dressSanitizer for vulnerability detection. As shown in Table

TABLE IV
PREVIOUSLY UNKNOWN VULNERABILITIES EXPOSED BY CHARON IN

UNDER-TEST ICS PROTOCOL IMPLEMENTATIONS.

Subject Vulnerability Type AFL Polar AFLNet Boofuzz Peach Charon

FastRTPS heap-buffer-overflow 0 0 0 0 0 1

stack-buffer-overflow 0 0 0 1 1 2

Cyclone heap-buffer-overflow 0 0 0 0 1 1

stack-buffer-overflow 0 0 0 1 1 1

FreeRTPS stack-use-after-scope 0 0 0 1 1 1

global-buffer-overflow 2 3 2 7 7 10

OpenDDS heap-buffer-overflow 0 0 1 1 1 3

MMS SEGV 0 0 0 0 1 2

Total 2/21 3/21 3/21 11/21 13/21 21/21

IV, Charon has exposed 21 previously unknown vulnerabil-
ities in total and most of them are buffer overflows, which
are known to be easily exploitable to perform attacks such as
remote code execution (RCE), denial of service (DoS), etc. In
practice, we found that AFL, Polar and AFLNET can only find
2, 3, 3 of these vulnerabilities while Boofuzz and Peach only
found 11 and 13. All the other fuzzers could not find extra
new vulnerabilities out of these 21 vulnerabilities exposed by
Charon. From the result, we can see that Charon is effective
in exposing previous unknown vulnerabilities.

177 dest[i] = msg->buffer[msg->pos + i];

@@ -230,8 +230,9 @@ inline SequenceNumberSet_t
CDRMessage::readSequenceNumberSet

228 uint32_t numBits = 0;
229 valid &= CDRMessage::readUInt32(msg, &numBits);

+ valid &= (numBits <= 256u);
230 uint32_t n_longs = (numBits + 31ul) / 32ul;
231 uint32_t bitmap[8];
232 - for (uint32_t i = 0; i < n_longs; ++i)

+ for (uint32_t i = 0; valid && (i < n_longs);
++i)

233 {
234 valid &= CDRMessage::readUInt32(msg,

&bitmap[i]);
235 }

Listing 4. Code snippet of a stack buffer overflow vulnerability found by
Charon in FastRTPS and the corresponding patch from the vendor

Listing 4 illustrates a stack-buffer-overflow vulnerability
found by Charon in FastRTPS. The vulnerability occurred
in function ReadUInt32 at Line 177. It was caused by an
illegal WRITE operation to dest[i]. We moved back to its
caller and found the true reason: the numBits read from
the package in line 237 was bigger than 256, so n_longs
calculated in next line is greater than 8. However, in line
239, the array bitmap had a length of only 8 bytes. There-
after, after entering the loop which started at line 240, the
address bitmap[9] was passed to function ReadUInt32
and wrote in the reference dest[i] at Line 177. Therefore, a
stack-buffer-overflow vulnerability was triggers for attempting
to write to a non-allocated stack address. We reported the
vulnerability to the developers and they have released the
corresponding patch that is shown in the form of diff in
Listing 4. The vendors added a condition statement to decide
whether the variable numBits is valid and only when it is

11

valid, could the program execute the loop in line 232, thus
fixing this vulnerability issue.

These six selected protocols are practical protocols used in
industry environment and all the 21 vulnerabilities found by
Charon are 0-day bugs that haven’t been reported before.
We had removed the duplicates and they are all unique.
Specially, the two vulnerabilities we found in CycloneDDS
have been assigned with CVE numbers CVE-2020-18734 and
CVE-2020-18735 (submitted by us to MITRE Corporation on
08/13/2020 and we got the reply on 08/24/2021, the processes
take a long time). And these two vulnerabilities are all rated
as level HIGH and get the 7.5 CVSS score from the NVD.
We have also reported the others of remained vulnerabilities
on 04/16/2021 and we are waiting for replies. Moreover, as
Table IV shows, 18 out of the 21 0-day vulnerabilities we
found are related to Buffer Overflow, a vulnerability category
that is extremely dangerous for ICS systems. As the OWASP
Foundation describes[25], the Buffer Overflow vulnerabilities
are rated ’VERY HIGH’ in the metrics of severity. As to the
metrics of likelihood of exploit, OWASP thinks the result is
’HIGH to VERY HIGH’ for Buffer Overflow.

Answer to RQ2. The results in Table IV prove that
Charon is effective in finding bugs of real-world
ICS protocols. Moreover, Charon has the best per-
formance of vulnerability detection among all selected
fuzzers. It exposed 21 previous-unknown severe vul-
nerabilities in ICS protocol implementations and all of
them have been confirmed and fixed by the vendors.

VI. DISCUSSION ON SCALABILITY

The main contribution of Charon is to employ cross-
state guidance and program status inferring to maximize code
coverage and support continuous fuzzing. Hence, it is more
likely to reach deeper and critical program statements before
exposing ICS protocol bugs.

The main potential threat is about the scalability to other
protocols. The method presented in this paper can be also
applied to other multi-states ICS protocols. The fuzzing pro-
cedure of Charon is fully automatic and the continuous state-
guiding fuzzing strategy is scalable across different protocols.
To adapt for other protocols, one only needs to provide the
state model of the target ICS protocol which stipulates what
are the under-test states and how these states jump from one
to another (as shown in Listing 1).

Another potential threat is to prepare high-quality data
models for fuzzing ICS protocols. The accuracy of data models
is crucial to guarantee the effectiveness of fuzzing. Without
data models, fuzzers such as AFLNet and Polar are unaware of
the ICS protocol packet structure, thus are limited to perform-
ing input structure agnostic mutations to produce new input
packets. These modifications are likely to invalidate the input
structure, therefore, the generated inputs tend to fail sanity
checks early on and are unable to reach actual program logic.
However, to build data models for generation-based fuzzers
such as Peach and Charon, developers need to read through

both the official protocol specifications and the documentation
of the target implementation, as ICS protocols allow vendor-
specific customization. Currently, we use existing data models
and will try to automatic data model learning in future work.

VII. RELATED WORK

Generic Fuzz Testing. Fuzz testing has become one of the
most famous techniques in the field of software testing. It
enjoys great popularity for its fully automatic running manner
and promising performance. Specifically, grey-box fuzzing,
which collects coverage feedback to guide generation or muta-
tion, has proved to be effective by many practices in real-world
software. AFL [5] is the representative of grey-box fuzzers.
To improve the efficiency of AFL, some researchers modified
its seed selection or mutation strategies, such as FairFuzz
[26]. Some other researchers equipped grey-box fuzzing with
taint analysis technique to analyze the trace of input streams
and better guide the fuzzing procedure, such as PATA[27],
DeepFuzzer [28] and REDQUEEN [29]. What’s more, sym-
bolic execution has been adopted by some researchers to help
fuzzers reach the deep logic of target programs. One example
of them is MoWF [30], which leverages input formats as the
constraint of symbolic execution during path exploration.

Fuzzing common network protocols. Many fuzzing tools
have been implemented and proposed for testing diverse net-
work protocols [9],[31],[32],[33]. AFLNET [9] extends AFL
and leverages state feedback to explore states as much as
possible. Despite the ability of exploring states, it focuses
on improving code coverage in isolated states, i.e. it does
not enhance cross-states code coverage. Moreover, AFLNET
is unable to utilize packet-level feedback, which is important
to figure out the contribution of each packet in the generated
sequence. More significantly, AFLNET relies on state code
to distinguish between different states which is not adopted
in most ICS protocols, so the applicability and effective-
ness of AFLNET are both limited. AutoFuzz [32] and
Protocol-state-fuzzing [31] share a similar insight
with AFLNET which automatically learns the state machine of
a protocol with state code to explore as many states as possible.
In contrast with these fuzzers, Charon not only takes protocol
state into account, but also places emphasis on maximizing
cross-state code coverage on multi-state ICS protocols by
leveraging packet-level feedback. Moreover, Charon con-
ducts optimization upon the running scenario of fuzzing ICS
protocols which is able to perform feedback-driven fuzzing
without restarting the target ICS protocol frequently.

Testing of ICS protocol implementations. Some works
try to apply fuzzing to ICS protocols[10][34][35][36][37].
Polar [10] leverages taint analysis to extract opcode of
ICS protocol to optimize the fuzzing process. GANFuzz[34]
uses generative adversarial network to train models for ICS
protocols while fuzzing. PropFuzz[35] conducts fuzzing on
PLC communication with the ICS environment. Beside fuzz
testing, there are many other kinds of works focusing on
testing ICS protocols[38][39][40][41]. Jaime,et al proposed
a validation approach to test ICS protocol vulnerabilities[38]
while Riyadi,et al performed real-time testing of ICS[39].

12

The work of ICS test bed[40] provides a convenient way to
generate test cases of ICS. In terms of the example RTPS
protocol in this paper, JFIT [42] leverages the fault injection
technique to test the robustness of some RTPS systems.
Thomas et al. conducted an investigation into some security
issues in RTPS protocol [43]. Different from existing testing
works of ICS protocols, Charon focuses on combining input-
structure-aware fuzzing technique with cross-state transitions
within such a multi-state environment of ICS protocols and
keeping their incessant running scenario during fuzzing.

VIII. CONCLUSION

In this paper, we present Charon, an efficient continuous
fuzzing platform for ICS protocol vulnerability detection.
It employs an innovative solution that uses state guidance
to maximize cross-state code coverage. Based on a novel
packet-level feedback mechanism and program status inferring
technique, Charon is able to perform continuous execu-
tions of ICS protocols during fuzzing. Finally, we evaluate
Charon on six widely-used ICS protocol implementations:
FastRTPS, CycloneDDS, FreeRTPS, OpenDDS, IEC61850-
MMS and MQTT. It achieved significant branch coverage
increases over state-of-the-art fuzzers such as Polar, AFLNET,
Boofuzz, and Peach. In addition, Charon has exposed 21
previously unknown security critical vulnerabilities. We will
enhance Charon with automatic data model learning and
apply it for more ICS protocols in our future work.

REFERENCES

[1] Wikipedia, “Industrial control system,” Website, Accessed Mar. 26th,
2022, https://en.wikipedia.org/wiki/Industrial control system.

[2] W. Knowles, D. Prince, D. Hutchison, J. F. P. Disso, and K. Jones,
“A survey of cyber security management in industrial control systems,”
International journal of critical infrastructure protection, vol. 9, pp. 52–
80, 2015.

[3] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security
& Privacy, vol. 9, no. 3, pp. 49–51, 2011.

[4] M. Kumar, “Dragonfly 2.0: Hacking group infiltrated european and us
power facilities,” The Hacker News, 2017.

[5] M. Zalewski, “American fuzzy lop,” 2015.
[6] Tool, “Peach fuzzing platform.” Website, Accessed Mar. 26th, 2022,

https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce.
[7] P. Amini and A. Portnoy., “Sulley,” 2012, accessed Mar. 26th, 2022.

[Online]. Available: https://github.com/OpenRCE/sulley
[8] Boofuzz, “Boofuzz: Network protocol fuzzing for humans,” Website,

Accessed Mar. 26th, 2022, https://boofuzz.readthedocs.io/en/stable/.
[9] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Aflnet: A greybox

fuzzer for network protocols,” in IEEE International Conference on
Software Testing, Verification and Validation (Testing Tools Track), 2020.

[10] Z. Luo, F. Zuo, Y. Jiang, J. Gao, X. Jiao, and J. Sun, “Polar: Function
code aware fuzz testing of ics protocol,” in The ACM SIGBED Interna-
tional Conference on Embedded Software (EMSOFT), 2019, pp. 1–22.

[11] OMG, “Dds interoperability wire protocol,” Website, Accessed Mar.
26th, 2022, https://www.omg.org/spec/DDSI-RTPS.

[12] “Official website of omg,” Website, Accessed Mar. 26th, 2022, https:
//www.omg.org/.

[13] O. M. Group., “Data distribution service,” Website, Accessed Mar. 26th,
2022, https://www.omg.org/spec/DDS/1.4/.

[14] Autoware, “Autoware,” Website, Accessed Mar. 26th, 2022, https://www.
autoware.auto/.

[15] ApolloAuto, “Apollo,” Website, Accessed Mar. 26th, 2022, https://
github.com/ApolloAuto/apollo.

[16] Autosar, “Adaptive autosar,” Website, Accessed Mar. 26th, 2022, https:
//www.autosar.org/standards/adaptive-platform/.

[17] llvm.org, “Clang: a c language family frontend for llvm.” Website,
Accessed Jan. 8th, 2021, https://http://clang.llvm.org/.

[18] eProsima, “Fastrtps,” Website, Accessed Mar. 26th, 2022, https://github.
com/eProsima/Fast-DDS/.

[19] eclipse cyclonedds, “Cyclonedds,” Website, Accessed Mar. 26th, 2022,
https://github.com/eclipse-cyclonedds/cyclonedds.

[20] objectcomputing, “Freertps,” Website, Accessed March. 26th, 2022,
https://github.com/objectcomputing/OpenDDS.

[21] F. Covatti, “libiccp,” Website, Accessed Mar. 26th, 2022, https://github.
com/fcovatti/libiec iccp mod.

[22] MzAutomation, “libiec61850,” Website, Accessed Mar. 26th, 2022,
https://github.com/mz-automation/libiec61850.

[23] Eclipse, “Eclipse mosquitto,” Website, Accessed Mar. 26th, 2022, https:
//github.com/eclipse/mosquitto.

[24] “Robot operating system.” Website, Accessed Mar. 26th, 2022, https:
//en.wikipedia.org/wiki/Robot Operating System.

[25] OWASP, “Buffer overflow,” Website, Accessed Jan. 8th, 2021, https:
//owasp.org/www-community/vulnerabilities/Buffer Overflow.

[26] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, 2018, pp. 475–485.

[27] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu, Z. Liu, and
J. Sun, “Pata: Fuzzing with path aware taint analysis,” in 2022 2022
IEEE Symposium on Security and Privacy (SP)(SP). IEEE Computer
Society, Los Alamitos, CA, USA, 2022, pp. 154–170.

[28] J. Liang, Y. Jiang, M. Wang, X. Jiao, Y. Chen, H. Song, and K.-
K. R. Choo, “Deepfuzzer: Accelerated deep greybox fuzzing,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 6, pp.
2675–2688, 2019.

[29] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence.” in NDSS,
vol. 19, 2019, pp. 1–15.

[30] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Model-based whitebox
fuzzing for program binaries,” in 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, 2016, pp. 543–553.

[31] J. De Ruiter and E. Poll, “Protocol state fuzzing of {TLS} implemen-
tations,” in 24th {USENIX} Security Symposium ({USENIX} Security
15), 2015, pp. 193–206.

[32] S. Gorbunov and A. Rosenbloom, “Autofuzz: Automated network pro-
tocol fuzzing framework,” IJCSNS, vol. 10, no. 8, p. 239, 2010.

[33] J. Somorovsky, “Systematic fuzzing and testing of tls libraries,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1492–1504.

[34] Z. Hu, J. Shi, Y. Huang, J. Xiong, and X. Bu, “Ganfuzz: a gan-
based industrial network protocol fuzzing framework,” in 15th ACM
International Conference on Computing Frontiers, 2018, pp. 138–145.

[35] M. Niedermaier, F. Fischer, and A. von Bodisco, “Propfuzz—an it-
security fuzzing framework for proprietary ics protocols,” in 2017
International conference on applied electronics. IEEE, 2017.

[36] H. Zhao, Z. Li, H. Wei, J. Shi, and Y. Huang, “Seqfuzzer: An industrial
protocol fuzzing framework from a deep learning perspective,” in 2019
12th IEEE Conference on software testing, validation and verification
(ICST). IEEE, 2019, pp. 59–67.

[37] S. J. Kim and T. Shon, “Field classification-based novel fuzzing case
generation for ics protocols,” The Journal of Supercomputing, vol. 74,
no. 9, pp. 4434–4450, 2018.

[38] J. Pavesi, T. Villegas, A. Perepechko, E. Aguirre, and L. Galeazzi,
“Validation of ics vulnerability related to tcp/ip protocol implementation
in allen-bradley compact logix plc controller,” in International Congress
of Telematics and Computing. Springer, 2019, pp. 355–364.

[39] E. Riyadi, T. Priyambodo, and A. Putra, “Real-time testing on improved
data transmission security in the industrial control system,” in 2020
3rd international seminar on research of information technology and
intelligent systems (ISRITI). IEEE, 2020, pp. 129–134.

[40] R. E. Gillen, L. A. Anderson, C. Craig, J. Johnson, R. Anderson,
A. Craig, and S. L. Scott, “Design and implementation of full-scale
industrial control system test bed for assessing cyber-security defenses,”
in 2020 IEEE 21st International Symposium on” A World of Wireless,
Mobile and Multimedia Networks”(WoWMoM). IEEE, 2020, pp. 341–
346.

[41] D. Duggan, M. Berg, J. Dillinger, and J. Stamp, “Penetration testing of
industrial control systems,” Sandia national laboratories, p. 7, 2005.

[42] A. Napolitano, G. Carrozza, A. Bovenzi, and C. Esposito, “Automatic
robustness assessment of dds-compliant middleware,” in 2011 IEEE 17th
Pacific Rim International Symposium on Dependable Computing. IEEE,
2011, pp. 302–307.

[43] T. White, M. N. Johnstone, and M. Peacock, “An investigation into some
security issues in the dds messaging protocol,” 2017.

https://en.wikipedia.org/wiki/Industrial_control_system
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://github.com/OpenRCE/sulley
https://boofuzz.readthedocs.io/en/stable/
https://www.omg.org/spec/DDSI-RTPS
https://www.omg.org/
https://www.omg.org/
https://www.omg.org/spec/DDS/1.4/
https://www.autoware.auto/
https://www.autoware.auto/
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://www.autosar.org/standards/adaptive-platform/
https://www.autosar.org/standards/adaptive-platform/
https://http://clang.llvm.org/
https://github.com/eProsima/Fast-DDS/
https://github.com/eProsima/Fast-DDS/
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/objectcomputing/OpenDDS
https://github.com/fcovatti/libiec_iccp_mod
https://github.com/fcovatti/libiec_iccp_mod
https://github.com/mz-automation/libiec61850
https://github.com/eclipse/mosquitto
https://github.com/eclipse/mosquitto
https://en.wikipedia.org/wiki/Robot_Operating_System
https://en.wikipedia.org/wiki/Robot_Operating_System
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow

	Introduction
	Background
	Multiple States in ICS Protocols
	Generation-based fuzzing

	Challenges in Fuzzing ICS Protocols
	System Design
	Cross-State Guiding
	Program Status Inferring
	System Implementation

	Evaluation
	Experiment Setup
	Efficiency of Coverage Improvement
	Previously Unknown Vulnerabilities

	Discussion on Scalability
	Related Work
	Conclusion
	References

