Polar: Function Code Aware Fuzz
Testing of ICS Protocol

Zhengxiong Luo!l, Feilong Zuo!, Yu Jiang?, Jian Gaol, Xun Jiao?, Jiaguang Sun!

1School of Software, Tsinghua University

’Department of Computer Science and Engineering, Villanova University

' EMBEDDED |
| SYSTEMS
| WEEK

Outline

e Introduction
* Background
e Motivation

* Polar
* System Design
 Evaluation

e Conclusion

Industry Control System

¥ Industrial Control System(ICS) is a general term referring
to a system of electronic components that control the
physical operations of machinesl.

W ICS is widely used to support critical infrastructure, such
as power system, transportation, etc.

[1] Jayne Caswell et al. Survey of Industrial Control Systems Security. 3

Industry Control System Protocol

B ICS protocol plays a vital role in communications among

system components and devices.

B Unlike the common internet protocols, ICS protocols are
designed to acquire measurements and status and to
control devices. Therefore, ICS protocol packet usually
carries a special field, called the function code field, to
specify what is received and what should be responded.

B One simple format for example:

Header

Length

Func.

Data

|<— 3 bytes —>»

€«—— 2 bytes ‘)|<— 1 byte »<

\l‘

n bytes

Y

Function Code in ICS Protocol

Modbus packet

B Simple example I T - ca
[Electrical ICS odhus St

Modbus packet — Read
running Modbus CLT-0, 5 2™ ceone
protocol Response OFf “oonwa_ ﬂ

O Different values (e.g.

. . — rite Registers
1and 3) in function Q B A = ik

o e — Oo -
code field refer to - .

. on r;)c risn er o \
different orders. Modbus Master ﬁ
Mass
Electric Net

Response

Function Code in ICS Protocol

B Simple example

[Electrical ICS
running Modbus
protocol

O Different values (e.g.
1and 3) in function
code field refer to
different orders.

B To meet the demand of the developing industry, ICS

Modbus packet

[[Func | . |

Modbus packet

Coail

"Modb?gglaveﬂ P

— Read

= Coil Value Mass
Electric Net

> —
/ O°l ~control
Response ontrol__

Modbus packet

RTU
"Modbus Slave2" Inner

= N .

—> —] Inner Register 2 -
e Oo -
N

Response

Control Center of
Electric ICS
"Modbus Master"

3 Registers
— Write g

Control
N

Mass
Electric Net

protocol is becoming more open.

B This openness has increased the susceptibility to attack,

primarily due to greater awareness of ICS protocols.

ICS Protocol Vulnerability

dtls1_process_heartbeat(SSL *5) {

*p = &s->s3->rrec.data[0], *pl;
hbtype;

payload;

padding = 16;

hbtype = *p++;
n2s(p, payload);
pl = p;
*buffer, *bp; r;
buffer = OPENSSL_malloc(1 + 2 + payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);

Industry Control System Incidents

B Frequent accidents arising Attack '
ﬁ'om ICS protocol gravely Venezuela Blackout 2019
threaten the ICS, resulting Saudi Arabia TRISIS 2017
in enormous property loss Ukraine CRASHOVERRIDE 2016
and SOClal lnfraStTUCture Ukraine BLACKENERGY3 2015
damage.

German Steel Mill Cyber Attack 2014
DragonFly 2014
B Protecting ICS Protocol Havex Malware 2013

from attacks is essential! Telvent Canada Attack o

Fuzz Testing for ICS Protocol

®

Protocol Parameters

@ reacr SYNOPSYS
Fuzzer

american fuzzy lop (2.52b) L Y

Y ST O

Heartbleed Shellshock

Fuzz Testing is efficient in Bug Detection

Fuzz Testing Workflow

Initial JJ
Seeds

Fuzz Testing Workflow

Initial JJ
Seeds

Select

Seed

Fuzz Testing Workflow

Initial JJ
Seeds

Select

Seed

Mutate

Malformed

Seeds

\/_

Fuzz Testing Workflow

Initial JJ
Seeds

Select

Seed

Mutate

Target
Program

Run

Malformed

Seeds
\/_

Fuzz Testing Workflow

Initial JJ
Seeds

Seed | Feedback (Target
Qu?y L Pro gram
Select Run
Seed Mutate Malformed
- Seeds
\/_ \/_

Coverage-Guided Fuzz Testing

Initial JJ
Seeds

Target
Program

Select Run
Mutate Malformed
Seed X
- Seeds

Challenges for Traditional Fuzzers

B Challenge 1: Traditional fuzzers are unaware of
protocol information, treating each bit/byte
equally is inefficient.

w‘et is fixed. J

Header Length Func. Data CRC

€— 3 bytes —»1€—— 2 bytes —>»€—— | byte —>i€ n bytes »1€ 1 byte —>

16

Challenges for Traditional Fuzzers

B Challenge 2: Critical guidede information
such as valuable path information embedded
in seed inputs is routinely underutilized.

Need
Guidance!

» Mutate

Valuable
Seeds

J| Malformed

Useless

|

Seed

/

Seeds

17

Intuition

B Function code field plays an essential role in
ICS protocol, making fuzzers aware of function
code information can help them determine
where and how to mutate.

B Some security-sensitive points in the protocol
(e.g., dynamic memory allocation malloc, we
define them as vulnerable operations) can be
obtained to assist fuzzers in generating more
inputs so as to exercise those wvulnerable
operations more often.

18

e Introduction
* Background
e Motivation

* Polar
* System Design
 Evaluation

e Conclusion

Outline

19

Key Questions

* Q1: How to locate vulnerable operations in
target ICS protocol program?

* (Q2: How to extract function code information
for given ICS protocol program?

* Q3: How to effectively and efficiently fuzz for
security vulnerability detection by leveraging
information obtained above?

20

Polar Overview

Q1: locate vulnerable operations

()

Target | Static
P " .
rogram - Analysis
. J

\ 4

Vulnerable M
Operations

Polar Overview

Q2: extract function code information

4) 1

Target | Static | funcinfol!

ProgramV Analysis Candidates

. J

L 4

Vulnerable JJ
Operations

[1] funcinfo is is the abbreviation of function code information

Polar Overview

Q2: extract function code information

4 D - " Function |
. uncton
PTarget | Static .| funcinfol! . Code
rogramy Analysis Candidates Locator

. J

L 4

Vulnerable JJ
Operations

[1] funcinfo is is the abbreviation of function code information

Polar Overview

Q3: effectively and efficiently fuzz

g N)
Target R Static o| funcinfo L » FuCncfctlleon
Programy Analysis Candidates Locator
- S — \ o

v

[

[

Vulnerable
Operations

Detected . .
Bug Guided Fuzzing
7

Polar Overview

~ R ! " Fumation |
Target | Static _,| funcinfo L > uél()cdlezon
ProgramV Analysis Candidates Locator
_ J

“ A\ 4

Vulnerable JJ _ JJ
Ew ‘ funcinfo

Detected . |
Bug Guided Fuzzing
7

Static AnalysiS—Vulnerable Operation

B The operations related to
memory are usually
. . 1 void decode(FILE* fd) {
security-sensitive: 5
a. dynamic memory 3 int size = get_size(fd);
allocation functions (e.g. |4 int *p = malloc(size);
5
6

malloc, realloc) cos
b. functions implementing }

operations on strings (e.g. 7
memcpy, strcpy).

26

Static AnalysiS—Vulnerable Operation

B The operations related to
memory are usually ;
security-sensitive: 3 int size = get size(fd);
a. dynamic memory 4 int *p = malloc(size);
allocation functions (e.g. °
malloc, realloc) °
b. functions implementing
operations on strings (e.g. [
memcpy, strcpy).

void decode(FILE* fd) {

}

Report

Entry: decoder.c 4 malloc] Z;

M Static Analysis Module locates those operations by
scanning the source code.

27

Static Analysis-Function code candidate

Observation:

" The function)

code processing
statement is

usually a multi-

\branch statement/

Static Analysis-Function code candidate

Observation: Solution:
4 The function A /EI Step1: Translate the source code into\
code processing abstract Syntax tree (AST).

statement is
usually a multi-

\branch statement/ _ y

Abstract Syntax Tree

Static Analysis-Function code candidate

Observation: Solution:
4 The function A /EI Step1: Translate the source code into\
code processing abstract Syntax tree (AST).

. 0 Step2: Use DFS to traverse AST and locate
multi-branch subtree.

statement is
usually a multi-

\branch statement/ _ y

Abstract Syntax Tree

/\
if/switch

= —]
fa—

/\

Static Analysis-Function code candidate

Observation: Solution:
4 The function A /EI Step1: Translate the source code into\
code processing abstract Syntax tree (AST).

[Step2: Use DFS to traverse AST and locate
multi-branch subtree.

statement 1s >

busuaﬂy a multi- [0 Step3: Extract related information from
\ Dranc statement/ _ subtree)
Abstract Syntax Tree
— e I
- if/switch .
L Source File: xxx
o »| Position: xxx
— - ' L Variable: xxx g
= Values: xxx

31

Function Code Locator

Observation: Function Code Entry:
4 The byte offsets of N Source File: decoder.c)
. , Position: line 12
function code in the Start Byte: 6
End Byte: 7
protocol. packets are Variable: func_code
\ fixed.)\ Values: [0x01, 0xOF, 0x16, 0x17]
Solution: | |

[)

[0 Stepi: Run target program with packets sampled on network.
[0 Step2: Use taint analysis to infer which bytes in input packet
determine the value of the variable in funcinfo candidate.

[0 Step3: Check whether the byte offset is always the same, if not,
\ discard the candidate. y

Guided Fuzzing

B After the above two
1 void decode(FILE* fd) {
modules, we know 5
ition f 3 int size = get size(fd);
the positions o . 4 Vulnerable Operation
vulnerable operations |5
and function code 573
statements. 8 Function Code
9 Statement

33

Guided Fuzzing

W After the above two
modules, we know
the positions of
vulnerable operations
and function code

void decode(FILE* fd) {

1

2 e

3 int size = get size(fd);

4 LOG(... Instrumentation
5

6

7

8

Vulnerable Operation

LOG(...) Instrumentation

statements.
. . Function Code
H nghtWElght Statement
instrumentation is
applied to trace them

for each program
executlion.

34

Guided Fuzzing

4 N - (F ti A
Target | Static _,| funcinfo L u(?ocdleOrl
ProgramV Analysis Candidates Locator
_ J
| ‘L I \ 4
Vulnerable JJ ' JJ
EW ‘ funcinfo
Detected : :
Bug Guided Fuzzing
7

Three Optimized Fuzzing Strategies

Guided Fuzzing

B We add three fuzzing strategies, one strategy

for vulnerable operations and two strategies
for function code aware.

Func.
Field
Protection

Power Synchronization

Schedule Mechanism

36

Power Schedule

For seed I, Count; donates hit times of
vulnerable operations during execution.

The more Count; is, the more energy would be
assigned to I for further mutation.

Eini(1)
B

E() = min(: h(Count,),M)

Function Code Field Protection

Observation:

4)

The legal values of function code

are taken from a fixed small set,

where enumerating exhaustively
would be unnecessary.

_ /

Header Length Func. Data CRC

|<—— 3 bytes —>»1€«—— 2 bytes 4>|<— 1 byte ;{: n bytes >}: 1 byte 4>|

38

Function Code Field Protection

Observation:

-

N\

The legal values of function code

are taken from a fixed small set,

where enumerating exhaustively
would be unnecessary.

INFE

N -~

AN

Solution:

N()

Protect it against
random mutation.

Function codé
Dictionary

Header Length Func.

Data

[€«—— 3 bytes —»1€—— 2 bytes —>|<— 1 byte ﬁ‘ll:

n bytes

L4
A
o
5
o

Observation:

traces.

_

ﬁ Different values of

function code cause
different execution

Synchronization Mechanism

Function Code Statement

Value | Value II Value X Not Valid
Execution Execution Execution Exception
Trace Trace Trace Handling
I II
M

40

Synchronization Mechanism

Observation:

ﬁ Different values of

function code cause
different execution
traces.

] But there are also some
similarities between
different traces: they
tend to include some
same code snippet or

L

Function Code Statement

call the same functions
kin the library. /

|

Execution
Trace
I

A4
| Valel | | Valuell |

Execution
Trace
II

Value X ‘

l

Execution
Trace
X

3

{ 1
Y

Not Valid

4

4 N\

Exception
Handling

oo/

=

41

Synchronization Mechanism

Solution:

/During fuzzing, some\

seeds may achieve new
coverage.

Function Code Statement

Value

/

_ /

Value 2

value n

e S

T

\

42

Synchronization Mechanism

Solution:

f \ Function Code Statement
[J During fuzzing, some

seeds may achieve new

coverage. Value 1 value n
[J New path information

can be synchronized to

help explore new paths

for other seeds with
different values of the

\function code. /

43

Evaluation

B Component evaluation

1 Ei: Whether Polar can locate function code
statements?
[0 E2: Are proposed fuzzing strategies valuable?

B QOverall evaluation

[0 E3: Whether Polar can detect previously unknown
vulnerabilities in real-world ICS protocol programs?

Experiment Setup

B We selected three widely used open-source
implementations of ICS protocols.

B Including Modbus, IEC104 and IEC 61850.

gp/\ IEC 61850 4 |EC
=

Protocol Library N s
60870-5-104

B Those ICS protocols are international standard
widely used in critical infrastructures.

45

E1: Locate Function Code

(" . .)
Polar precisely located function code of those
protocols.

\ J

: , Set of Legal Values (hexadecimal) 0
Project | IM| | |funcinfo| for Barh, RimoinfolBlece True?
libmodbus | 11 1 [01,02,03,04,05,06,07,0F,10,11,16,17] v
[07,13,43,0B,23,83,64] v
el = - [83,64,67,30,32,80,81] v
libiec61850 | 174 1 [02,80,A1,82,A4,A5,A6,AB,AC,AD] v

46

Paths covered

Paths covered

60

20 A

10 A

60 -

201

10

E2: Optimize Fuzzing

Higher is better

- Polar-AFL
AFL

0 4 8 12
Time(hours)

(a) libmodbus

16

20 24

|

i Higher is better

—— Polar-AFLFast
AFLFast

0 4 8 12
Time(hours)

(d) libmodbus

16

20 24

Paths covered

Paths covered

200 A

-
w
o

-
[=3
o

"f
i

Higher is better

—— Polar-AFL
AFL

0

4 8 12
Time(hours)

(b) IEC104

16

/

l
|

Higher is better

—— Polar-AFLFast
AFLFast

0

4 8 12
Time(hours)

(e) IEC104

16

20 24

Paths covered

Paths covered

70 1

~
(=]
L

o
o
i

g

8

g

} —— Polar-AFL
Higher is better AFL

0 4 8 12 16 20 24
Time(hours)

(c) libiec61850-MMS

¥y

‘ —— Polar-AFLFast
Higher is better AFLFast

0 4 8 12 16 20 24
Time(hours)

(f) libiec61850-MMS

Number of paths covered by different fuzzing techniques averaged over 25 runs with different seeds

47

E2: Optimize Fuzzing

-

_

~

Polar can help to achieve higher code coverage at a

AFLFast respectively) and can gain sustained

18.8% increase for AFL and AFLFast respectively)

faster speed (an average of 3.6X and 1.5X for AFL and

increases in paths covered (an average of 19.9% and

/

E3: Previously Unknown Vulnerabilities§?

: IEC 61850
B Polar has exposed 10 previously unknown

vulnerabilities, 6 of which have been
assigned unique CVE identifiers in the U.S 1EC

National Vulnerability Database. coa70-5.104

Project Type Advisory Total

heap buffer overflow CVE-2018-18834 , CVE-2018-19185
libiec61850 | NULL pointer dereference | CVE-2018-18937, CVE-2018-19122 6

SEGV CVE-2018-19093, CVE-2018-19121
stack buffer overflow Bug-2019-0312
[EC104 SEGV Bug-2019-0207, Bug-2019-0307 4

denial of service Bug-2019-0402

49

E3: Previously Unknown Vulnerabilities

n mzillgith commented on 1 Nov 2018 Contributor +(@) ++
- -
]] o
C by
Hi. Thank you for the hint. There has been a bug in the calculation of the GOOSE message size that u mziligith commentec on/lo Nov;2010 sl @
estimated the size two byte too small. So depending on the data types of the GOOSE payload this
problem is triggered. Should be fixed now. Thanks for the hint. There was another problem in GOOSE payload length calculation. Should be
fixed with this commit 8d728b3
CVE-2018-19185 Learn more at National Vulnerability Database (NVD) i
« CVSS Severity Rating * Fix Information « Vulnerable Software Versions « SCAP Mappings ¢ CPE Information
Description
An issue has been found in libIEC61850 v1.3. It is a heap-based buffer overflow in BerEncoder_encodeOctetString in mms/asn1/ber_encoder.c. This is exploitable even after CVE-2018-18834 has
been patched, with a different dataSetValue sequence than the CVE-2018-18834 attack vector.
CVE ID CWEID # of Exploits Vulnerability Type(s) Publish Date Upd@ate Date Score Gain ccess Level Access Complexity Authentication Conf. Integ. Avail.
1 CVE-2018-19185 119 Overflow 2018-11-12 201 one Remote Low Not required Partial Partial Partial

ncoder_encodeOctetStrirfp in mms/asnl/ber_encoder.c. This is exploitable even after CVE-2018-

8834 attack vector.

An issue has been found in libIEC61850 v1.3. It is a heap-based buffer overflow in Be
18834 has been patched, with a different dataSetValue sequence than the CVE-2018-

2 CVE-2018-19122 476 2018-11-09 201§-12-07 4.3 one Remote Medium Not required None None Partial
An issue has been found in libIEC61850 v1.3. It is a NULL pointer dereference in Etheghet_sendPacket in etherngt_bsd.c.

3 CVE-2018-19121 476 2018-11-09 201§-12-07 4.3 one Remote Medium Not required None None Partial
An issue has been found in libIEC61850 v1.3. It is a SEGV in Ethernet_receivePacket if§ ethernet_bsd.c.

4 CVE-2018-19093 284 2018-11-07 201§-12-13 5.0 one Remote Low Not required None None Partial

** DISPUTED ** An issue has been found in libIEC61850 v1.3. It is a SEGV in Control
maintainer disputes this because it requires incorrect usage of the client_example_co

5 CVE-2018-18957 119 Overflow 2018-11-05 201
An issue has been found in libIEC61850 v1.3. It is a stack-based buffer overflow in pr
6 CVE-2018-18937 476 2018-11-05 201
An issue has been found in libIEC61850 v1.3. It is a NULL pointer dereference in Clie

bjectClient_setCommandfferminationHandler in client/client_control.c. NOTE: the software

one Remote Low Not required Partial Partial Partial
oose_publisher.c.
one Remote Low Not required None None Partial

t/ied_connection.c.

50

E3: Previously Unknown Vulnerabilities§?

B Taking the bug in [EC104 for example.

if(CsumTemp == csum){
LOG("-%s—,data need ack:%d,Len:%d,seek:%d \n",__FUNCTION__,FlagNum,DatalLen,Iec10x_Update_SeekAddr);

for(i=0; i<3; i++){
ret = IEC10X->SaveFirmware(DataLen,DataPtr,FirmwareType,Iecl@x_Update_SeekAddr);
if(ret == RET_SUCESS)

break;
}

It is caused by
tending to call an

if(ret == RET_ERROR){
LOG("save firmware error \n");

| unimplemented
Iec104_BuildDataAck(TI, IEC10X_COT_DATA_ACK, FirmwareType, FlagNum,1); function
FirmFlagCount = FlagNum; (SaveFiI‘mwaI‘e),

Iec10x_Update_SeekAddr+=Datalen;
}else{

LOG("%s,need ack check sum error:%d,need:%d,num...:%d\n",__FUNCTION__,CsumTemp,csum,FlagNum);

//Iecl04_BuildDataAck(TI, IEC10X_COT_ACT_TERMINAL, FirmwareType, FlagNum,1);

which then leads to
application crash.

51

E3: Previously Unknown Vulnerabilities§?

B Taking the bug in [EC104 for example.

W If this bug is made use of for destructive purposes, the
server device can immediately shut down, causing the
whole system to crash.

if(CsumTemp == csum){
LOG("-%s—,data need ack:%d,Len:%d,seek:%d \n",__FUNCTION__,FlagNum,DatalLen,Iec10x_Update_SeekAddr);

for(i=0; i<3; i++){
ret = IEC10X->SaveFirmware(DataLen,DataPtr,FirmwareType,Iecl@x_Update_SeekAddr);
if(ret == RET_SUCESS)

break;

}

It is caused by

if(ret == RET_ERROR){
LOG("save firmware error \n");

tending to call an

| unimplemented
Iec104_BuildDataAck(TI, IEC10X_COT_DATA_ACK, FirmwareType, FlagNum,1); funCtiOI‘l
FirmFlagCount = FlagNum; (SaveFiI‘mwaI‘e),

Iec10x_Update_SeekAddr+=Datalen;
}else{
LOG("%s,need ack check sum error:%d,need:%d,num...:%d\n",__FUNCTION__,CsumTemp,csum,FlagNum);
//Iecl04_BuildDataAck(TI, IEC10X_COT_ACT_TERMINAL, FirmwareType, FlagNum,1);
}

which then leads to
application crash.

52

