
Polar:	Function	Code	Aware	Fuzz	
Testing	of	ICS	Protocol

1

Zhengxiong Luo1,	Feilong Zuo1,	Yu	Jiang1,	Jian	Gao1,	Xun Jiao2, Jiaguang Sun1

1School	of	Software,	Tsinghua	University
2Department	of	Computer	Science	and	Engineering,	Villanova	University

Outline

• Introduction
• Background
• Motivation

• Polar
• System Design
• Evaluation

• Conclusion

2

3

n Industrial Control System(ICS) is a general term referring
to a system of electronic components that control the
physical operations of machines[1].

n ICS is widely used to support critical infrastructure, such
as power system, transportation, etc.

Industry	Control	System

[1]	Jayne	Caswell	et	al.	Survey	of	Industrial	Control	Systems	Security.

4

n ICS protocol plays a vital role in communications among
system components and devices.

n Unlike the common internet protocols, ICS protocols are
designed to acquire measurements and status and to
control devices. Therefore, ICS protocol packet usually
carries a special field, called the function code field, to
specify what is received and what should be responded.

n One	simple	format	for	example:

Industry	Control	System	Protocol

5

n Simple	example
p Electrical	ICS	

running	Modbus	
protocol

p Different	values	(e.g.	
1 and	3)	in	function	
code	field	refer to	
different	orders.

Function	Code	in	ICS	Protocol

6

n Simple	example
p Electrical	ICS	

running	Modbus	
protocol

p Different	values	(e.g.	
1 and	3)	in	function	
code	field	refer to	
different	orders.

Function	Code	in	ICS	Protocol

n To meet the demand of the developing industry, ICS
protocol is becoming more open.

n This openness has increased the susceptibility to attack,
primarily due to greater awareness of ICS protocols.

ICS	Protocol	Vulnerability

7

int dtls1_process_heartbeat(SSL*s) {
unsigned char *p = &s->s3->rrec.data[0], *pl; // p points to the received package

unsigned short hbtype;

unsigned int payload;
unsigned int padding = 16; /* Use minimum padding */

......
hbtype = *p++; // /*Type of the p */

n2s(p, payload); // The length of the package is payload

pl = p; // p -> message content

unsigned char *buffer, *bp; int r;
buffer = OPENSSL_malloc(1 + 2 + payload + padding); // 3 bytes for type and length

bp = buffer;

......
*bp++ = TLS1_HB_RESPONSE; // type
s2n(payload, bp); // length is payload
memcpy(bp, pl, payload); memcpy(bp, pl, payload);

if(1+2+payload+16>s->s3-
>rrec.length)
return 0;

Heartbleed	vulnerability	

Industry	Control	System	Incidents

8

Attack Year

Venezuela	Blackout 2019

Saudi	Arabia	TRISIS 2017

Ukraine CRASHOVERRIDE 2016

Ukraine BLACKENERGY3 2015

German	Steel	Mill	Cyber	Attack	 2014

DragonFly 2014

Havex Malware 2013

Telvent Canada	Attack	 2012

n Frequent accidents arising
from ICS protocol gravely
threaten the ICS, resulting
in enormous property loss
and social infrastructure
damage.

n Protecting	ICS	Protocol	
from	attacks	is essential!

9

Fuzz	Testing	for	ICS	Protocol

Fuzz	Testing	is	efficient	in	Bug	Detection

Protocol Parameters

Fuzzer

10

Seed
Queue

Initial	
Seeds

Fuzz	Testing	Workflow

11

Seed
Queue

Initial	
Seeds

Seed

Select

Fuzz	Testing	Workflow

12

Seed
Queue

Initial	
Seeds

Seed Malformed	
Seeds

Select

Mutate

Fuzz	Testing	Workflow

13

Seed
Queue

Initial	
Seeds

Seed Malformed	
Seeds

Target
Program

Crash

Select

Mutate

Run

Fuzz	Testing	Workflow

14

Seed
Queue

Initial	
Seeds

Seed Malformed	
Seeds

Target
Program

Crash

Select

Mutate

Run

Feedback

Fuzz	Testing	Workflow

15

Seed
Queue

Initial	
Seeds

Seed Malformed	
Seeds

Target
Program

Crash

Select

Mutate

Run

New
Coverage

Mark	asInteresting Seed

Coverage-Guided	Fuzz	Testing

16

n Challenge 1: Traditional fuzzers are unaware of
protocol information, treating each bit/byte
equally is inefficient.

Challenges	for	Traditional	Fuzzers

Value	set	is	fixed.

17

n Challenge 2: Critical guidede information
such as valuable path information embedded
in seed inputs is routinely underutilized.

Seed Malformed
Seed

Valuable	
Seeds

Useless	
Seeds

Need
Guidance!

Challenges	for	Traditional	Fuzzers

Mutate

18

Intuition

n Function code field plays an essential role in
ICS protocol, making fuzzers aware of function
code information can help them determine
where and how to mutate.

n Some security-sensitive points in the protocol
(e.g., dynamic memory allocation malloc, we
define them as vulnerable operations) can be
obtained to assist fuzzers in generating more
inputs so as to exercise those vulnerable
operations more often.

Outline

• Introduction
• Background
• Motivation

• Polar
• System Design
• Evaluation

• Conclusion

19

20

• Q1: How to locate vulnerable operations in
target ICS protocol program?

• Q2: How to extract function code information
for given ICS protocol program?

• Q3: How to effectively and efficiently fuzz for
security vulnerability detection by leveraging
information obtained above?

Key	Questions

21

Static
Analysis

Target
Program

Vulnerable
Operations

Polar	Overview

Q1:	locate	vulnerable	operations

22

Static
Analysis

Target
Program funcinfo[1]

Candidates

Vulnerable
Operations

Polar	Overview

Q2:	extract	function	code	information

[1]	funcinfo is	is	the	abbreviation	of	function	code	information

23

Static
Analysis

Target
Program funcinfo[1]

Candidates

Vulnerable
Operations

Function
Code

Locator

funcinfo

Polar	Overview

Q2:	extract	function	code	information

[1]	funcinfo is	is	the	abbreviation	of	function	code	information

24

Static
Analysis

Target
Program funcinfo

Candidates

Vulnerable
Operations

Function
Code

Locator

funcinfo

Guided	Fuzzing

Q3:	effectively	and	efficiently	fuzz	

Polar	Overview

Detected
Bug

25

Polar	Overview

Static
Analysis

Target
Program

funcinfo
Candidates

Vulnerable
Operations

Function
Code

Locator

funcinfo

Guided	Fuzzing
Detected

Bug

26

n The	operations	related	to	
memory are	usually	
security-sensitive:
a. dynamic	memory	

allocation	functions	(e.g.	
malloc,	realloc)	

b. functions	implementing	
operations	on	strings	(e.g.	
memcpy,	strcpy).	

1 void decode(FILE* fd) {
2 ...
3 int size = get_size(fd);
4 int *p = malloc(size);
5 ...
6 }

Static	Analysis-Vulnerable	Operation

27

n The	operations	related	to	
memory are	usually	
security-sensitive:
a. dynamic	memory	

allocation	functions	(e.g.	
malloc,	realloc)	

b. functions	implementing	
operations	on	strings	(e.g.	
memcpy,	strcpy).	

1 void decode(FILE* fd) {
2 ...
3 int size = get_size(fd);
4 int *p = malloc(size);
5 ...
6 }

Static	Analysis-Vulnerable	Operation

n Static Analysis Module locates those operations by
scanning the source code.

Report
Entry:

source	
file

line	 function

decoder.c 4 malloc

28

The	function	
code	processing	
statement	is	

usually	a	multi-
branch statement

Static	Analysis-Function	code	candidate
Observation:

29

Observation:
The	function	

code	processing	
statement	is	

usually	a	multi-
branch statement

Solution:

Static	Analysis-Function	code	candidate

p Step1: Translate the source code into
abstract Syntax tree (AST).

Abstract Syntax Tree

if/swit h

Abstract Syntax Tree

if/switch

30

Observation:
The	function	

code	processing	
statement	is	

usually	a	multi-
branch statement

Static	Analysis-Function	code	candidate

p Step1: Translate the source code into
abstract Syntax tree (AST).

p Step2: Use DFS to traverse AST and locate
multi-branch subtree.

Abstract Syntax Tree

if/swit h

Abstract Syntax Tree

if/switch

Solution:

31

Observation:
The	function	

code	processing	
statement	is	

usually	a	multi-
branch statement

Solution:
p Step1: Translate the source code into

abstract Syntax tree (AST).
p Step2: Use DFS to traverse AST and locate

multi-branch subtree.
p Step3: Extract related information from

subtree.

Static	Analysis-Function	code	candidate

Abstract Syntax Tree

if/switch

funcinfo Candidate

Source File: xxx
Position: xxx
Variable: xxx
Values: xxx

32

Observation:
The	byte	offsets	of	
function	code	in	the	
protocol	packets	are	

fixed.

Function	Code	Locator

p Step1: Run target program with packets sampled on network.
p Step2: Use taint analysis to infer which bytes in input packet

determine the value of the variable in funcinfo candidate.
p Step3: Check whether the byte offset is always the same, if not,

discard the candidate.

Solution:

Function	Code	Entry:
Source	File:	decoder.c
Position:	line	12
Start	Byte:	6
End	Byte:	7

Variable:	func_code
Values:	[0x01,	0x0F,	0x16,	0x17]

33

1 void decode(FILE* fd) {
2 ...
3 int size = get_size(fd);
4 int *p = malloc(size);
5 ...
6 switch(func_code) {
7 case 1:
8 ...
9 case n:
10 ...
11 }
12 }

Function	Code	
Statement

Guided	Fuzzing

n After	the	above	two	
modules,	we	know	
the	positions of	
vulnerable	operations	
and	function	code	
statements.

Vulnerable	Operation

34

1 void decode(FILE* fd) {
2 ...
3 int size = get_size(fd);
4 LOG(...)
5 int *p = malloc(size);
6 ...
7 LOG(...)
8 switch(func_code) {
9 case 1:
10 ...
11 case n:
12 ...
13 }
14 }

Function	Code	
Statement

Vulnerable	Operation
Instrumentation

Instrumentation

n After	the	above	two	
modules,	we	know	
the	positions of	
vulnerable	operations	
and	function	code	
statements.

n Lightweight	
instrumentation is	
applied	to	trace	them	
for	each	program	
execution.

Guided	Fuzzing

35

Guided	Fuzzing

Static
Analysis

Target
Program

funcinfo
Candidates

Vulnerable
Operations

Function
Code

Locator

funcinfo

Guided	Fuzzing
Detected

Bug

Three Optimized Fuzzing Strategies

36

Power
Schedule

Func.
Field

Protection

Synchronization	
Mechanism

n We add three fuzzing strategies, one strategy
for vulnerable operations and two strategies
for function code aware.

Guided	Fuzzing

37

ℰ(𝐼) = 𝑚𝑖𝑛
)ℰ!"!(𝐼

𝛽
· ℎ Count# , 𝑀

n For seed 𝐼 , Count! donates hit times of
vulnerable operations during execution.

n The more Count! is, the more energy would be
assigned to 𝐼 for further mutation.

Power	Schedule

38

Observation:

The	legal	values	of	function	code	
are	taken	from	a	fixed	small	set,	
where	enumerating	exhaustively	

would	be	unnecessary.

Function	Code	Field	Protection

39

Mutate

Observation:

The	legal	values	of	function	code	
are	taken	from	a	fixed	small	set,	
where	enumerating	exhaustively	

would	be	unnecessary.

Solution:

Protect	it	against	
random	mutation.

Function	Code	Field	Protection

Function	code	
Dictionary

40

Synchronization	Mechanism

Observation:

p Different	values	of	
function	code	cause	
different	execution	
traces.

41

Observation:

Synchronization	Mechanism

p Different	values	of	
function	code	cause	
different	execution	
traces.

p But	there	are	also	some
similarities	between	
different	traces:	they	
tend	to	include	some	
same	code	snippet	or	
call	the	same	functions	
in	the	library.

42

Function	Code	Statement

Value	1 Value	2

...

value	n

...

Synchronization	Mechanism

Solution:

p During	fuzzing,	some	
seeds	may	achieve	new	
coverage.

43

Synchronization	Mechanism

Solution:

p During	fuzzing,	some	
seeds	may	achieve	new	
coverage.

p New path information
can be	synchronized	to
help	explore	new	paths	
for	other	seeds	with	
different	values	of	the	
function	code.

Function	Code	Statement

Value	1 Value	2

...

value	n

...

44

n Component	evaluation
p E1: Whether Polar can	locate function	code	

statements?
p E2:	Are	proposed	fuzzing	strategies	valuable?

n Overall	evaluation
p E3:	Whether	Polar	can	detect	previously	unknown	

vulnerabilities	in	real-world	ICS	protocol	programs?

Evaluation

45

Experiment Setup

nWe	selected	three	widely	used	open-source	
implementations	of	ICS	protocols.

n Including	Modbus,	IEC104	and	IEC 61850.	

n Those ICS	protocols	are	international	standard	
widely	used	in critical	infrastructures.

46

E1:	Locate	Function	Code

Polar	precisely located	function	code	of	those	
protocols.	

47

E2:	Optimize	Fuzzing	

48

E2:	Optimize	Fuzzing	

Polar	can	help	to	achieve	higher	code	coverage	at	a	
faster	speed	(an	average	of 3.6X	and	1.5X for	AFL	and	

AFLFast respectively)	and	can	gain	sustained	
increases	in	paths	covered	(an	average	of	19.9%	and	
18.8%	increase for	AFL	and	AFLFast respectively)

49

n Polar has exposed 10 previously unknown
vulnerabilities, 6 of which have been
assigned unique CVE identifiers in the U.S
National Vulnerability Database.

E3:	Previously	Unknown	Vulnerabilities

50

E3:	Previously	Unknown	Vulnerabilities

51

n Taking the bug in IEC104 for example.

It	is	caused	by	
tending	to	call	an	
unimplemented	

function	
(SaveFirmware),	

which	then	leads	to	
application	crash.

E3:	Previously	Unknown	Vulnerabilities

52

n Taking the bug in IEC104 for example.
n If this bug is made use of for destructive purposes, the

server device can immediately shut down, causing the
whole system to crash.

It	is	caused	by	
tending	to	call	an	
unimplemented	

function	
(SaveFirmware),	

which	then	leads	to	
application	crash.

E3:	Previously	Unknown	Vulnerabilities

