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Industrial Control System (ICS) protocols are widely used to build communications among system compo-
nents. Compared with common internet protocols, ICS protocols have more control over remote devices by
carrying a specific field called “function code”, which assigns what the receive end should do. Therefore, it is
of vital importance to ensure their correctness. However, traditional vulnerability detection techniques such
as fuzz testing are challenged by the increasing complexity of these diverse ICS protocols.
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IEC104, and IEC 61850. Results show that, compared with AFL and AFLFast, Polar achieves the same code
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1 INTRODUCTION

Industrial Control System (ICS) is widely used in industrial production. As a general term, it is used
to describe the combination of hardware and software with network connectivity, supporting op-
eration or automation on industrial processes. ICS protocol plays an important role in building
communications among components of ICS. Different from common internet protocols, ICS pro-
tocols are designed to have more control over remote devices for industrial practice. They carry a
specific field called “function code” to assign what the receive end should do, e.g., start, stop, and
report self status. As such, it is vital to guarantee the correctness of those protocols. However, a
large number of severe security vulnerabilities have been revealed in widespread industrial control
system protocols. For instance, the well-known Heartbleed [33] vulnerability (CVE-2014-0160) in
the OpenSSL library has affected a wide distribution of devices.

There are many fuzzing tools suitable for ICS protocol vulnerability detection such as Amer-
ican Fuzzy Lop (or simply AFL) [43], Sulley [1], Peach [30], and so on. Those fuzzers have been
widely used to detect security vulnerability such as application crash, buffer overflow, memory
leaks, and double free. They can be roughly classified into two categories based on how test cases
are produced: generation-based and mutation-based. Mutation-based fuzzers, such as AFL, gen-
erate new inputs by randomly mutating existing inputs. Those fuzzers are popular due to their
ease-of-use and fantastic vulnerability-detecting power. In contrast, generation-based fuzzers, in-
cluding Peach, require format specification and construct inputs by leveraging the knowledge of
this format.

In practice, even as these fuzzers have detected lots of vulnerabilities, there remain two chal-
lenges heavily limiting their effectiveness: (i) it is not easy to obtain the format specification of
ICS protocol and initialize the corresponding values, which requires significant manual efforts to
read the documentation and the source code; and (ii) it is difficult for existing fuzzers to reach
deep paths in program state space and achieve high code coverage at fast speed because invalid
test input mutation and generation result in meaningless repetitions and dramatically affect the
speed of fuzzing.

In this paper, we present Polar, a function code aware fuzzing framework which requires no
extra format specification of protocol packet and is scalable to discover vulnerabilities faster. In-
stead of optimizing the input generation process to produce more inputs in some existing fuzzing
approaches, we extract protocol features and utilize them to produce fewer but higher quality
inputs. Through investigation of different ICS protocols, we found that function code field plays
an important role in service realization and we can enhance the efficiency of traditional fuzzers
by equipping them with function code information. From the perspective of the source code, the
value of function code usually determines subsequent execution track, thus, making fuzzers aware
of function code information can help them determine where and how to mutate. Meanwhile,
we also found that some security-sensitive points in protocol (e.g., dynamic memory allocation
malloc, we define them as vulnerable operations) can be obtained to assist fuzzers in generating
more inputs so as to exercise those vulnerable operations more often.

We utilize static code analysis to filter some candidates of function code parameters and iden-
tify some vulnerable operations. Then byte-level taint analysis is applied to further verify those
candidates. It assigns each byte in input with a unique label when input data is accessed, tracks
the propagation of these labels and verifies how data flows in each variable associated with func-
tion code. After obtaining those semantic information, Polar makes the best of them to accelerate
fuzzing phase. Based on lightweight instrumentation of the source code, Polar is able to obtain
some feedback during program execution for a given input I, such as whether the function code
related statements or vulnerable operations are executed. If so, the further fuzzing process of I
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will take the feedback into consideration, which we define as guided fuzzing. This has three ad-
vantages: (i) it utilizes function code information to help exploring new paths by synchronizing
useful mutation information between seed inputs that have different values of function code; (ii)
it efficiently reduces the size of the mutation space because the legal values of function code are
taken from a fixed small set where enumerating exhaustively would be unnecessary and inefficient;
and (iii) the malformed inputs generated by guided fuzzing are more likely to exercise vulnerable
operations in the program and expose security vulnerabilities.

For evaluation, we augmented AFL and AFLFast with Polar and evaluated their performance
on several widely used open-source implementations of ICS protocols – Modbus [22, 37], IEC104
[9, 36] and IEC61850 [13, 34]. Experiment results show that Polar can help to achieve high code
coverage at a faster speed (an average of 3.6X and 1.5X for AFL and AFLFast respectively) and
can gain sustained increases in paths covered (an average of 19.9% and 18.8% increase for AFL
and AFLFast respectively) after 24 hours. Meanwhile, Polar has already exposed 10 previously
unknown vulnerabilities, 6 of which have been assigned with unique CVE identifiers in the US
National Vulnerability Database.

To the best of our knowledge, most ICS protocols are function code-oriented. Apart from Mod-
bus, IEC104, and IEC 61850, many other ICS protocols can also be applied with Polar, such as
IEEE C37.118 [2], Profinet [41], DNP3 [38], ICCP [39], and IEC101 [40]. In conclusion, our paper
makes the following contributions:

• We propose a novel lightweight approach that combines static and dynamic code analysis
to infer where an ICS protocol program processes function code field of packet without
manual effort.

• We propose a novel semantic information aware fuzzing strategy to accelerate fuzzing speed
and improve path coverage so as to expose more vulnerabilities.

• We implement Polar, evaluate it on several ICS protocols, and have detected many previ-
ously unknown vulnerabilities. Polar1 is open source for public use and can be augmented
to existing fuzzers for further improvement.

The rest of this paper is organized as follows: necessary background is introduced in Section 2
and a motivating example is given in Section 3. Then we detail the method and implementation of
Polar in Section 4 and the performance results in Section 5. Last, we introduce some related work
in Section 6 and summarize the paper in Section 7.

2 BACKGROUND

2.1 Industrial Control System and Protocol

Industrial control system (ICS) is a general term used to describe the combination of hardware
and software with network connectivity so as to support critical infrastructure, such as energy,
transportation, and communications. However, the increasing number of ICS components avail-
able over the Internet makes ICS easy prey for attackers. In the design of this system structure, ICS
protocol plays an important role in building communications among system components. Those
ICS protocols such as Modbus, IEC104, and IEC 61850 have been used in a wide range of industrial
domains. Their correctness directly affects the safe operation of ICS, thus, vulnerability detecting
techniques for ICS protocols are clearly needed.

Unlike the common internet protocols, ICS protocols are designed to acquire measurements and
status and to control other devices. In order to do this, the ICS protocol packet usually carries a spe-
cial field, called the function code field, to specify what is received and what should be responded.

1https://github.com/fouzhe/Polar-Fuzz
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Fig. 1. Electrical ICS running Modbus protocol.

Fig. 2. An example of ICS protocol packet.

Figure 1 shows an example of electrical ICS running protocol Modbus. In this example, a device
in the Control Center of the ICS plays the role as “Modbus Master” and two remote terminal units
(RTUs) serve as the “Modbus Slave”s. Each RTU has direct control over a mass electric net, which
has a great influence on people’s daily life. The whole ICS builds communication among devices
with protocol Modbus. A function code field is applied in Modbus to assign what the receive end
should do. As shown in this example, the master sends a packet with function code value a to slave
1, which means the slave should read its coil value. So after receiving this packet, slave 1 reads its
own coil, gets the value and responses to the master. Similarly, slave 2 gets a packet with function
code value b, which orders it to write some values in the packet to its inner registers to change
the operation of the electric net. Relaying on protocol Modbus, this ICS performs smoothly and
normally.

As an example, Figure 2 shows the simplified format of an ICS protocol packet: The Header
field declares information about protocol and packet, which usually contains protocol signature,
transaction identifier, unit identifier, etc; Length field means the number of remaining bytes in
this frame; Func. field represents the function code field; Data field indicates the data content
associated with function code; CRC field is short for cyclic redundancy check, which is an error
check mechanism to ensure the reliability of data. In this format, the Func. field is just the special
field designed for transmitting orders.

Figure 3 shows a simplified process of packet analysis in ICS protocol. We found that different
values of the function code in the packet direct the program to exercise different code paths. In
detail, assuming that an ICS protocol packet is received, the program first checks its integrity
through such filed as CRC (stage I). If valid, the program further processes the packet based on the
Func. field. The value indicated by the function code specifies the following trace. (stage II). Then,
the program will execute the corresponding trace with predefined libraries (stage III).
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Fig. 3. Overview of packet analysis in ICS protocol.

2.2 Fuzz Testing

As an automated software testing technique, fuzzing has emerged as one of the most effective
techniques for detecting bugs and security vulnerabilities in real-world software [7, 10, 12, 16, 20,
26]. It is first developed by Miller et al. [21] in 1990 and has, since then, been widely adopted in
practice. A number of serious security vulnerabilities in some important software programs have
been exposed by fuzzing [28].

Based on the utilization degree of internal program structure, fuzzers can be classified into
whitebox, blackbox and greybox. A whitebox fuzzer [4, 14, 15] utilizes source code analysis to bet-
ter understand the structure of program, while a blackbox fuzzer [1, 30] only requires access to the
program. A greybox fuzzer is an intermediate solution, and it employs some approaches to obtain
feedback from under-test-program and leverages those information to guide their fuzzing strat-
egy. Coverage-based greybox fuzzing (CGF) is a typical greybox fuzzing technology that employs
lightweight instrumentation to obtain coverage information. Taking AFL for example, it injects
instrumentation at branch points of the program under test and gets the coverage information as
follows:

The value of cur_location is generated randomly during compile time and is used to specify the
basic block. The shared_mem[] array is a 64 kB shared memory region used to track coverage. Each
byte set at (A >> 1) ⊕ B in shared_mem[] records hits of transition from basic block A to B. CGF
leverages coverage information to guide seed mutation. A general sketch is shown in Algorithm 1.
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ALGORITHM 1: Coverage-based Greybox Fuzzing (CGF)

Input: S : initial seeds
Input: P : program under test
Output: Crashes: test cases that make program crash
Output: Hanдs: test cases that make program hang

1 Queue ← S

2 Crashes ← ∅

3 Hanдs ← ∅

4 while true do

5 seed ← PickSeed(Queue )

6 score ← CalculateScore(P , seed )

7 for 1 ≤ i ≤ score do

8 seed ′ ← Mutate(seed )

9 Results ← RunTarget(P , seed ′)
10 if Crash(Results ) then

11 Crashes ← Crashes
⋃{seed ′}

12 else if Hang(Results ) then

13 Hanдs ← Hanдs
⋃{seed ′}

14 else if isInteresting(Results ) then

15 AddToQueue(Queue, seed ′)

At the beginning, the fuzzer is provided with a set of seed inputs S and they are added to the
seed pool Queue (lines 1–3). The seeds in Queue are chosen in a continuous loop unless timeout
or aborted (line 4). In each loop iteration, the fuzzer first chooses a seed from Queue (line 5) and
calculates the performance score of seed (line 6) as implemented in CalculateScore (). This is also
where the power schedule is implemented because score is then used to determine the amount of
time to spend mutating seed (line 7). In the implementation of AFL,CalculateScore () makes use of
the performance reports of seed such as execution time, block transition coverage, and program
depth achieved. Then, the fuzzer generates new inputs by randomly mutating seed as implemented
in Mutate () (line 8). The new input seed ′ is then used to run the under-test-program (line 9). If it
crashes or hangs the program, then it will be added to the corresponding set (lines 10–13). When
seed ′ achieves new program coverage, it will be marked as interesting seed and added toQueue for
further fuzzing (lines 14–15).

3 MOTIVATIONAL EXAMPLE

As a motivating example for the proposed fuzzing framework, Listing 1 shows a simplified
sample code snippet that parses packets from the example format shown in Figure 2. In order
to point out the problem, we omit the verification code snippet of Header and CRC. First, the
code reads the Length and Func. fields (lines 9–10), and then takes further measures according
to the value of function code (line 12-30). In the sample code of Listing 1, the various operations
supported by the function code can be classified into two classes: Data Access and Diagnostics.
The former means some operations involved with the data in the internal register or other storage
devices in the programmable logic controller (PLC) devices, including WRITE_REGISTERS (line 16),
READ_REGISTERS (line 23) and WRITE_AND_READ_REGISTERS (line 25); the latter usually refers
to a series of operations about getting the status or event log of PLC, such as REPORT_SLAVE_ID
(line 13). In general, Data Access is more vulnerable than Diagnostics because Data Access involves
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Listing 1. An example code snippet of decoding packet

access to the storage device while Diagnostics is just a response to query without further action.
The sample code has a “deep” heap buffer overflow bug in the function write in line 20 because
the write function uses the write_len value from the packet without sanitization, and the
corresponding function code is WRITE_REGISTERS.

Traditional mutation-based fuzzers, like AFL, do not adequately expose such heap buffer over-
flow vulnerability in Listing 1. Since mutation-based fuzzers are unaware of the packet format,
random mutation operations on the Func. field will cause most of the generated packets to be
rejected in line 27. Furthermore, with equal treatment for each seed, the lack of awareness of vul-
nerable operations and pertinence of more vulnerable traces would result in a low probability of
triggering the error in line 20. Traditional fuzzing methods would require significant effort apply-
ing blind and meaningless repeated modifications to explore the whole space.

In contrast, Polar leverages static and dynamic program analysis to detect function code
(line 12) information and vulnerable operation (line 20) information, and then makes use of those
information during fuzzing. In detail, function code information (function_code) can be used to
accelerate the fuzzing process by exploiting the information to synchronize useful mutation infor-
mation between seeds and avoid invalid mutation on this field. Furthermore, vulnerable operation
information (status = write()) can be applied to help fuzzer select more seeds to exercise those
operations more frequently, which makes triggering vulnerabilities faster and more likely.
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Fig. 4. Polar System Overview. It mainly consists of three components: Static Analysis for detecting func-

tion code candidates and vulnerable operations; Function Code Locator for function code verification; Guided

Fuzzing for novel fuzzing strategy.

4 SYSTEM DESIGN

In this section, we first introduce the overview of Polar using the motivation example above, and
then present details of the design.

4.1 Polar Overview

To achieve the proposed fuzzing framework, one of the most critical steps in the process is to ac-
quire pertinent information such as which byte offsets in the packet belong to the function code
field. Therefore, Polar requires byte-level taint tracing. But taint tracing is relatively expensive for:
(i) tracking each variable individually; and (ii) taint tracing in the fuzzing stage. Our key insight
is that taint tracing is unnecessary for the execution of the program during fuzzing. We can con-
duct pre-processing before the fuzzing phase to obtain function code information. Furthermore,
static analysis can be applied for reducing the number of variables to be tainted. At its highest
level, Polar contains three components: static analysis, function code locator, and guided fuzzing,
as shown in Figure 4. We use the program in Listing 1 to illustrate Polar ’s basic workflow.

Static Analysis Module. Given an ICS protocol program P, Polar first uses a lightweight static
analysis to obtain: (i)funcinfo candidates; by scanning the source code of ICS protocol, static ana-
lyzer extracts specified code structures that function code processing statement may conform to
and records their information in the file funcinfo candidates; (ii) Vulnerable Operations; simulta-
neously, static analyzer will also collect information about security-sensitive operations such as
dynamic memory allocation functions (e.g., malloc, realloc) and a set of functions implementing
operations on strings (e.g. memcpy, strcpy, strcat).

In the example of Listing 1, the funcinfo candidates will include:

which means the variable function_code in line 12 of decoder.c may record the value of the
function code and its possible values are 0x01, 0x0F, 0x16, and 0x17. Similarly, if there is a memcpy
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function call in function write in line 20 and a malloc function call in line 31, the Vulnerable

Operations report will include entries as follows:

which means there are vulnerable operations in line 20 and 31 of decoder.c, and their related
functions are memcpy and malloc respectively.

Function Code Locator Module. The first step may identify many funcinfo candidates with
potential false positive, which need to be further verified. In this phase, Polar applies taint analysis
to monitor the flow of data in protocol program P for a given input I. More specifically, the execu-
tion monitor records which input bytes of I determine the value of candidate funcinfo variable. In
this example, the byte that influences the value of candidate funcinfo variable function_code is the
sixth byte (see Figure 2). Through that taint information collected during the preliminary run-time
execution, the funcinfo can be further confirmed. The final output version of funcinfo is as below:

Guided Fuzzing Module. In the third phase, the traditional fuzzer is improved based on the
identified funcinfo and Vulnerable Operations. Polar’s main optimization in the fuzzing strategy is
designed for ICS protocols based on our investigation of their features. Polar incorporates light-
weight synchronization mechanism to share useful path information, avoids invalid repetition on
different values of the function code field and tries to exercise vulnerable traces more often. For
example, the test input seeds that cover line 12 and 31 would be selected and mutated with more
possibilities. The mutation information of interesting seeds with the function code of value 0x0F
would be partially synchronized to seeds with the function code of value 0x17 by Polar’s fuzzing
procedure.

4.2 Static Analysis

The static analysis module is used to detect suspicious function code statements and vulnerable
operations in the source code. Since the function code field in the ICS protocol is usually the key
point designed for a variety of control demands, the function code processing statement is usually
a multi-branch statement that determines the following execution directions. As shown in line 12
in Listing 1, different functions are represented as different values of the Func. field in Figure 2.
For instance, the set of legal values that the variable function_code in Listing 1 can have is {0x01,
0x0F, 0x16, 0x17}, designed for different demands respectively.

Algorithm 2 shows the detail of this module. We first translate the source code into abstract
syntax tree (AST) for better understanding and analysis (line 2). Compared to the source program,
AST provides a more structured and precise format for analyzing the code construction and logic
component during the static analysis period. In the tree format, each node of the tree represents
one syntax structure in the source program and the children of the node correspond to the units
forming this syntax structure.

Then, we use the Depth First Search (DFS) algorithm to traverse the abstract syntax tree and lo-
cate the potential source code related to the function code field (lines 3–13). As mentioned before, a
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ALGORITHM 2: Extract funcinfo candidates

Input: P : program under test
Output: f : funcinfo candidates

1 Algorithm

2 AST ← CompileAst(P )

3 root ← GetRoot(AST )

4 DFS(root)

5 Procedure DFS(tree_node)
6 if tree_node equals null then

7 return

8 else

9 if IsMultipleBranch(tree_node ) then

10 f ← f
⋃

ExtractFuncinfo(tree_node )

11 Children ← GetChildren(tree_node )

12 for child ∈ Children do

13 DFS(child)

function code judging statement usually tends to be multiple branch statement. From the perspec-
tive of source code, it may be switch-case statement or if-then statements. Correspondingly, the
function IsMultipleBranch() can be designed to filter multi-branch subtree based on their feature.
We can dive into the details for those two structures: (i) Switch-case statement. In the format of
AST, the whole information of a switch-case structure is recorded in the subtree with the root of
the “SwitchStmt” tree node. As a result, to locate a switch-case structured multiple branch state-
ment, we argue that when a “SwtichStm” tree node is found during DFS, the subtree with root
of this node can be marked as what we want. (ii) In addition, when facing protocols with struc-
tures like if-then statements, we can use similar ways to extract funcinfo candidates. Based on the
feature of function code in ICS protocol, we list two screening conditions for IsMultipleBranch():
(1) the depth of corresponding if-then AST should be greater than a threshold; and (2) the condition
params of all “if” must be the same one, which should be recorded as funcinfo candidate variable
and the corresponding values of conditions will be marked as legal values of this variable. Once
obtaining a multi-branch subtree, we can extract its information such as variable name, position
of this multi-branch, legal value set, and so on (line 10). Meanwhile, when traversing AST, we can
collect the position information of vulnerable operations in the source code.

4.3 Function Code Locator

After obtaining the information of potential function code related statements, Polar works as
follows to reduce false positives and verify their authenticity.

Dynamic Taint Tracing. In order to monitor the data flow of under-test-program for given
input, Polar uses dynamic taint analysis (DTA). DTA can keep track of tainted input and deter-
mine which memory locations and registers are dependent on it. Furthermore, based on different
granularity, DTA can be extended to trace the derivation of the taint values to individual offsets
in the input. Polar implements a byte-level taint tracing and tracks the label propagation during
program execution based on LLVM DataFlowSanitizer (DFSan) [8].

To implement DTA for ICS protocol analysis, there are two problems that need to be solved:
(i) How to identify the taint source to assign taint labels? (ii) How to extract the label information
of the target variables? For the first problem, the taint source is the sampled ICS protocol packet,
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and the data read from the packet should be marked for further taint label assignment. To do
this, Polar makes use of the ABI List in DFSan to intercept relevant function calls and replace
them with the corresponding custom wrapper. For example, for a packet transmitted via socket,
Polar intercepts function calls such as socket, recv, read, and close. When a socket is created,
Polar records the file descriptor fd. Each time the program reads from this socket, Polar records
the offset and assigns different labels for each byte in the buffer. The value of offset can be updated
in accordance with the return value of recv. Furthermore, Polar stops tracking fdwhen the socket
is closed. For the second problem, Polar instruments the original source code with calls to the taint
source library, and the position for instrumentation is the code point where the funcinfo candidate
variable is used, such as line 12 in the Listing 1. The taint library is used to extract the label
information for those target variables and pass it to the execution monitor.

Function Code Verification. In this step, the execution monitor is used to verify funcinfo

candidates and delete false positives. Algorithm 3 provides the overview of the process.

ALGORITHM 3: Verify Function Code Information

Input:M: set of funcinfo candidates
Input: seeds: initial inputs for the program
Input: P : program under test
Output:M′: subset of funcinfo candidates after verification(true funcinfo)
Output: O: set of offset information for each funcinfo inM

1 for e ∈ M do

2 Oe ← ∅

3 M′ ←M
4 for seed ∈ seeds do

5 taint_information← RunTarget(P , seed )

6 for e ∈ M do

7 I ← GetOffsets(taint_information, e )

8 if Oe is empty then

9 Oe ← I
10 else if not Equal(Oe ,Oe

⋂I) then

11 M′ ←M′ − e

For Algorithm 3 in detail,M represents the set of funcinfo candidates. Then, for each iteration,
the execution monitor fetches an input seed from the initial test inputs, runs the target program
with seed, and collects the taint_information simultaneously during the execution (lines 4–5). The
initial test inputs are packets randomly sampled on network in real industrial production environ-
ment. Then, for each candidate e inM, the execution monitor extracts the offsets of bytes in the
seed that taint the target variable of e from the taint_information through the Polar’s taint source
library (lines 6–7). Let the offsets of e be Oe . The execution monitor records Oe after each run and
monitors whether it is always the same for each seed. More specifically, if Oe is always the same,
the execution monitor retains e . Otherwise, it discards e from M′ (lines 8–11). This is based on
the observation that, for a given function code func. (there maybe multiple function codes in some
ICS protocols), the byte offsets of func. in the protocol packets are fixed.

After running the program with all the initial seeds, we assume that the remaining funcinfo

candidates in M′ are true function code information, and record their information along with
byte offsets in the file funcinfo. A piece of funcinfo consists of the source file, variable position,
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starting offset of byte, ending offset of byte and legal values as shown in the Section 4.1. Those
information is used for guided fuzzing.

4.4 Guided Fuzzing

The guided fuzzing module of Polar incorporates that information into the traditional coverage-
based greybox fuzzing (CGF) shown in Algorithm 1. In simple terms, the original CGF generates
malformed inputs by mutating existing inputs, feeds them to the under-test-program and records
the inputs when the program crashes or hangs. In Polar, we devise a novel fuzzing strategy for ICS
protocol fuzzing to increase the efficiency based on the funcinfo and Vulnerable Operations obtained
in the above steps. Our modifications are mainly reflected in three aspects: (i) First, we modify the
way of calculating a seed’s performance score, so that vulnerable operations are exercised more
frequently; (ii) Second, we modify the way mutations are imposed on seeds, avoiding blind modifi-
cation on some key areas; (iii) Third, based on the feature of ICS protocol, we design a lightweight
synchronization mechanism between seeds with different values of the function code to help ex-
plore new paths faster. The first two aspects are addressed in the function CalculateScore () and
Mutate () of Algorithm 1. The third aspect is addressed in Algorithm 4.

Guided Seed Prioritization and Mutation. Given the original program, we first instrument
the program based on the funcinfo and Vulnerable Operations. Unlike the instrumentation of CFG
presented in Section 2.2, we use a more precise instrumentation to record whether the function
code statements or vulnerable operations are executed. A sketch of the code that is inserted at
each target point in the program is shown in Listing 2 (lines 2,7):

Listing 2. Polar ’s Instrumentation

The variable Func_ID identifies the current function code statement. It is assigned by the exe-
cution monitor in the function code locator module, and the variable Vul_Op_Index is assigned a
constant value. Hence, the shared memory of existing fuzzers such as AFL could be expanded to
collect those information easily. The execution trace of the under-test-program on a given input is
collected as a set of pairs of the form (Func_ID, hit_counts) and a pair of the form (Vul_Op_Index,

hit_counts), where hit_counts means the hit times of the corresponding statement for a single ex-
ecution. Due to the small number of funcinfo and Vulnerable Operations, the overhead of our in-
strumentation can be roughly ignored.

Secondly, Polar implements a power schedule that not only considers those indexes mentioned
in Section 2.2, but also brings vulnerable operations into the analytical scope. Let E (I) denotes
energy of seed I, and the original energy of I calculated by base fuzzer is Eini (I). The times of
vulnerable operations CountI is recorded during execution. Polar computes E (I) as Formula (1):

E (I) =min

(
Eini (I)

β
h(CountI ),M

)
(1)

h(x ) is an increasing function and E (I) increases as CountI increases. β balances the relation be-
tween the base fuzzer energy assignment value and Polar’s energy assignment value. The constant
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M provides an upper bound on the number of mutations per fuzzing iteration. Hence, the higher
the value ofCountI is, the more energy will be assigned to I for further mutation. Thus, the chance
to exercise those vulnerable operations is much higher.

Thirdly, Polar optimizes the mutation strategy used by traditional CGF that takes each bit/byte
into consideration. For a given seed I, letPI represents the set of Func_ID hit by I during execution,
that is to say, for each Func_ID ∫ ∈ PI , the value of hit_counts of ∫ is non-zero. If I achieves new
program coverage and is marked as interesting seed (Algorithm 1, line 14), PI will be taken into
consideration during I’s mutation. In particular, if a byte of I belongs to [start_byte ∫ , end_byte ∫ ]

for some ∫ ∈ PI in the funcinfo, it is then protected against being mutated. This approach can
effectively reduce the cardinality of mutation space. We have found empirically that more than
90% of seeds in the Queue (Algorithm 1, line 5) hit one or more function code branches. Therefore,
it makes sense to protect the Func. field because blind mutation will cause too many invalid seeds,
and feeding them to the target program is time-consuming (especially for large programs that run
slowly) and meaningless. In addition, due to random mutation of CGF, many seeds produced are
likely to be rejected during Validity Verification (Figure 3, stage I). Assuming that seed I0 can
pass the verification, blindly mutating the Func. field of I0 will increase the probability of being
rejected during Function Code Verification (Figure 3, stage II), making it more difficult for
fuzzers to reach deep places in a program.

Guided Seed Synchronization. Last, we add a novel synchronization strategy called replace
to traditional CGF, aimed to synchronize useful mutation information between seeds with
different values of the function code. As mentioned before, different function code values will
cause different execution traces. However, for different values, we also observe that there are
many similar operations between some traces and they tend to include the same code snippet or
call the same functions in some library as shown in Figure 3. Taking the function code in Modbus
[37] for example, the function code value specified to write single coil has almost the same
operations as the function code value specified to write single register. They all need to
calculate the mapping address, calculate the data to write and construct a response message.
The only difference between them is the place to write. In addition, the function code specified
to write single coil performs a subset of the operations carried out with the function code

ALGORITHM 4: Synchronization Mechanism between different values of the Function Code

Input: I : seed to mutate
Input: PI: set of Func_ID hit by I during execution
Input: funcinfo: function code information obtained
Output: F : test cases generated by mutating I in replace phase

1 F ← ∅

2 if PI is not empty then

3 for ∫ ∈ PI do

4 X∫ ← GetSpecific(funcinfo, ∫ )

5 C ← GetCandidates(X∫ )

6 start_byte, end_byte ← GetRange(X∫ )

7 for c ∈ C do

8 I
′ ← I

9 for start_byte ≤ i ≤ end_byte do

10 I
′ ← Replace(I′, c, i )

11 F ← F ⋃{I′}
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write multiple coil. Hence, an input with one value of the function code that achieves new
program coverage can be used to guide the mutation of inputs with other values of the function
code. Based on those features, we implement the following synchronization strategy.

Algorithm 4 describes this strategy. Given a seed I to mutate, when set PI of I is not empty, the
mutation strategy replace will be applied to generate new inputs (lines 3–11). For each Func_ID

∫ ∈ PI, the detailed information will be extracted from funcinfo (lines 4–6) and the bytes of I in
range [start_byte ∫ , end_byte ∫ ] will be replaced with legal candidate values (lines 7–11).

This synchronization strategy is lightweight and efficient for fuzz testing of ICS protocol. Due to
the similarity between some traces for different values of the function code, the test cases generated
in this phase satisfy many primitive constraints and have a high likelihood of exploring new paths,
making trigger potential vulnerabilities more likely. Through the experiment, we found that this
synchronization mechanism can sustainably and efficiently provide interesting seeds during the
fuzzing of ICS protocol.

4.5 System Implementation

Polar consists of three modules: the static analyzer, the function code locator and the guided
fuzzer. The static analyzer exploits Clang compiler to obtain the AST information from the ICS
protocol source program during the period of compiling. In the function code locator, to support
fine-grained byte-level taint tracing described in Section 4.3, we implement taint tracing for
Polar based on LLVM DataFlowSanitizer (DFSan) [8]. To identify taint sources, we make use of
the ABI List in DFsan to intercept relevant function calls. Furthermore, we implement a taint
library to extract label information for the execution monitor.

The guided fuzzer module is based on AFL 2.52b/AFLFast [3] (called Polar-AFL and Polar-
AFLFast respectively). We extend the shared memory segment to store hits of function code
branches and times of vulnerable operations. To support source code instrumentation, we extend
afl-clang-fast [29] and use it as the compiler of our tool chain. Moreover, we add a new muta-
tion strategy named replace and modify the existing mutation strategy in AFL/AFLFast, making
use of funcinfo. Meanwhile, the power schedule takes Vulnerable Operations into consideration.
Implementation details are available through the Github page reported at Footnote 1.

5 EVALUATION

In order to measure the effectiveness of Polar, this section presents an evaluation of the program.
First, we evaluated the accuracy of Polar’s function code identification (for the module Static

Analysis and Function Code Locator) in Section 5.2. Then we evaluated the efficiency of our novel
fuzzing strategy (for the module Guided Fuzzing) in Section 5.3. We implemented our framework
on AFL and AFLFast (called Polar-AFL and Polar-AFLFast separately) and compared their results
to demonstrate the acceleration in fuzzing and improvement in coverage. Last, in Section 5.4, we
list the previously unknown vulnerabilities detected by Polar.

5.1 Experiment Setup

We evaluated the performance of Polar on several open-source implementations of some widely
used ICS protocols. We chose libmodbus [22, 37], IEC104 [9, 36] and libiec61850 [13, 34]. Those ICS
protocols are both typical and widely used in industrial practice. Table 1 shows the description of
those protocols.

We tested our framework on the top of two popular fuzzing tools, AFL and AFLFast. AFL is
a state-of-art coverage-base greybox fuzzer that has exposed vulnerabilities in a widespread of
programs including OpenSSL, PHP, tcpdump [35]. AFLFast is an enhancement of AFL. It extends
AFL by collecting path frequency and utilizing it to prioritize seeds exercising low-frequency paths.
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Table 1. Description of Selected ICS Protocols

Protocol Description

Modbus
Modbus protocol has turned into the de facto standard for building

communications between industrial devices since it was presented in 1979.
It is a serial network protocol based on TCP/IP.

IEC104
IEC104 is an international standard widely used in electric power, urban rail
transit and other industries. It ensures the power supply systems operating

safely and reliably.

IEC61850
IEC61850 protocol is one of the most important protocols in the field of
electric power system automation. It realizes the engineering operation

standardization of intelligent substation.

Table 2. Function Code Identification Results

Project |M| |funcinfo|
Set of Legal Values (hexadecimal)

for Each funcinfo Piece
True?

libmodbus 11 1 [01,02,03,04,05,06,07,0F,10,11,16,17] �
IEC104 12 2

[07,13,43,0B,23,83,64] �
[83,64,67,30,32,80,81] �

libiec61850 174 1 [02,80,A1,82,A4,A5,A6,AB,AC,AD] �

It, thus, achieves high code coverage and exposes vulnerabilities faster than AFL [3]. To analyze
the code coverage achieved by different fuzzing tools, we chose the commonly used path coverage
as the main metric. A new path in AFL means a new program execution state. Therefore, the more
paths a fuzzing tool explores, the higher probability it will detect a vulnerability.

Our experiments were conducted on a 64-bit machine with 80 cores (Intel(R) Xeon(R) Gold 6148
CPU @ 2.40GHz), 128GB of main memory, and Ubuntu 16.04.6 LTS as the host OS. We ran each
fuzzing tool on each program for 24 hours (on a single CPU core).

5.2 Accuracy on Function Code Identification

Since accurately locating the function code processing statements is critical in our proposed frame-
work, we ran Polar on the above three ICS protocols to evaluate its accuracy.

The results of Polar ’s function code identification are summarized in Table 2. There are two
steps for Polar to identify function code: a screening process and a verification process. In the
first step, Polar uses static analysis to filter some funcinfo candidates. It scans the whole program
and extracts multi-branch information. As Table 2 shows, the column |M| represents the number
of funcinfo candidates detected by module Static Analysis. For the project libiec61850, |M| is large
because it is complex and applies many switch statements to process other data. In the second
step, to refine the setM, Polar instruments the program with calls to Polar taint library at the
detected candidate points, runs the program with malformed packets and monitors how data flows
in each point. The third column |funcinfo| indicates the number of pieces in the final funcinfo.
Additionally, the fourth column lists the legal values detected by Polar corresponding to each
funcinfo piece. After manual inspection with the ground-truth, the fifth column shows whether
Polar successfully detected true function code processing statements, where “�” means success
and “×” means failure.

As an example shown in Table 2, in libmodbus, Polar detected 11 suspected function code state-
ments after static analysis. After the Polar taint analysis stage, only one was left as true funcinfo
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Fig. 5. Number of paths covered by different fuzzing techniques averaged over 25 runs with different seeds.

and the legal value set is [01,02,03,04,05,06,07,0F,10,11,16,17] for the hexadecimal. This funcinfo was
further verified to be true after we referred to the source code [22] and the documentation [37].

In conclusion, the results show that Polar can successfully detect the function code statement
pieces and extract the precise legal values corresponding to each Func. field. These pieces of
information will be made use of in the following guided fuzzing stage.

5.3 Acceleration on Fuzzing

Results Overview. After obtaining the funcinfo of each ICS protocol, we further evaluated our
novel fuzzing strategy based on those semantic information. We ran each fuzzing tool for 24 hours
(on a single core) on each selected project based on 5 different sets of starting seeds (including the
empty seed). What’s more, we repeated each 24-hour experiment 5 times to establish statistical
significance of results [18]. Each project is accompanied with Google AddressSanitizer (ASan)[25].
Figure 5 plots, for each project and technique, the average number of paths covered over all 25 runs
at each time slot (dark central line) and 90% confidence intervals in paths covered at each time slot
(shaded region around line) over the 25 runs for each 24-hour experiment.

From Figure 5, we can see that with Polar, AFL and AFLFast are able to achieve higher path
coverage at a faster speed. Meanwhile, in our 24-hour experiments, we find that most fuzzers even-
tually became convergent, what we describe as the fuzzer reaching a “saturation” state. On average,
Polar-AFL reaches the “saturation” state 3.6X faster than AFL and 1.5X faster than AFLFast. For
a dedicated number of covered path, for example, 55 paths, Polar-AFL is about 4x, 1.1x, and 9x
faster than AFL on libmodbus, IEC104 and libiec61850 respectively. Polar-AFLFast is about 5x,
1.2x, 12x faster than AFLFast on libmodbus, IEC104 and libiec61850 respectively. Furthermore, for
libmodbus, Polar-AFL covered 9.1% more paths than AFL. Polar-AFLFast covered 12.7% more
paths than AFLFast. For IEC104, Polar-AFL covered 19.5% more paths than AFL. Polar-AFLFast
covered 24.1% more paths than AFLFast. For libiec61850, Polar-AFL achieves 31.0% more paths
than AFL and Polar-AFLFast achieves 19.6% more paths than AFLFast.
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Fig. 6. Illustration for A (Q ) and B (Q ).

To further illustrate the effectiveness of our fuzzing strategy and experiment result impartially,
we introduce two definitions as below.

Definition 1. A (Q ). For a seed queue Q (Algorithm 1, line 1), A (Q ) represents the set of inter-
esting seeds generated by mutation operation replace in Q .

Definition 2. B (Q ). For a seed queue Q , B (Q ) represents the set of interesting seeds that are
generated by some seedS ∈ A (Q ) through one or more mutation operations (including replace).

To better understand those two definitions, Figure 6 gives an illustration. It shows four stages
of seed queueQ . The little circles inQ represent seeds and different colors of them represent their
different classes as listed in the top left corner. For stage i , it may go through several mutation
iterations to move to stage i + 1.

Definition 3. N (Q ). For a seed queueQ in Polar,N (Q ) means the impact factor about how our
novel fuzzing strategy contributes to providing interesting seeds during the fuzzing process.

Intuitively, we can calculate N (Q ) by Formula (2).

N (Q ) =
|A (Q ) | + |B (Q ) | − |A (Q )

⋂B (Q ) |
|Q | (2)

Definition 4. W (Q ). For a seed queueQ in Polar,Q− means the seed queue discards those seeds
that appear in the seed queue of the base fuzzer (AFL/AFLFast).W (Q ) means the impact factor
similar to N (Q ), and it only takes seeds in Q− into account.

Analogously,W (Q ) is computed by Formula (3).

W (Q ) =
|A (Q−) | + |B (Q−) | − |A (Q−)

⋂B (Q−) |
|Q | (3)

Then, within the limited time budget, N (Q ) reflects the improvement of fuzzing speed.W (Q )
describes the increment of path covered.

Once an interesting seed (Algorithm 1, line 14) is generated, Polar will use guided seed prioriti-
zation and mutation, and apply lightweight synchronization strategy (Algorithm 4) to synchronize
useful seed information, leading to the earlier appearance of more interesting seeds. Therefore,
compared to the base fuzzer, Polar can achieve higher speed. In addition, the approach of protect-
ing Func. field during mutation can also speed up the process of discovering new paths. Taking
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Table 3. N (Q ) for Each Project(Polar-AFL/Polar-AFLFast)

Project |Q | |A (Q )| |B (Q )| |A (Q )
⋂B (Q )| N (Q )

libmodbus 60/66 11/18 37/17 0/7 80.0%/42.4%
IEC104 225/236 14/15 195/197 4/5 91.1%/87.7%

libiec61850-MMS 65/72 7/11 6/9 4/8 13.8%/27.8%

Table 4. W (Q ) for Each Project(Polar-AFL/Polar-AFLFast)

Project |Q | |Q−| |A (Q−)| |B (Q−)| |A (Q−)
⋂B (Q−)| W (Q )

libmodbus 60/66 14/31 0/6 0/8 0/6 0.0%/12.1%
IEC104 224/236 208/226 5/11 189/173 3/3 84.9%/77.1%

libiec61850-MMS 65/72 62/69 7/11 6/9 4/8 13.8%/27.8%

those interesting seeds that cannot be generated by the base fuzzer (|Q−|) within the limited time
budget into count,W (Q ) objectively describes the ability of Polar to discover new paths.

Detail Analysis. To evaluate Polar using the above two indicators, we selected 1 run from
25 runs for each project and calculated N (Q ) and W (Q ) for them. Table 3 and 4 present the
details of N (Q ) andW (Q ) results for Polar-AFL and Polar-AFLFast.

Statistics on libmodbus. Modbus is a stable and relatively simple ICS protocol compared with oth-
ers both in format and size of the code base. Therefore, as illustrated in Figure 5, most fuzzers tend
to reach the “saturation” state in an early phase. As shown in Table 2, the legal values of funcinfo

are close to each other, which means it is easy for AFL/ AFLFast to achieve the extra-legal values
through simple mutation operations such as bit flips, byte flips, and arithmetics. Consequently,
the base fuzzer can generate almost the same interesting seeds as Polar did, which contributes to
the small value of |Q−| andW (Q ) in Table 4. Nevertheless, through our semantic aware mutation,
Polar is able to generate those seeds earlier, which optimizes the fuzzing process as reflected at
N (Q ) in Table 3.

Statistics on libiec61850-MMS. Compared to Modbus, libiec61850-MMS owns more complex
packet structures and larger variation of legal funcinfo values. The seeds generated by Polar
have few similarities with the base fuzzer (|Q−| is basically equal to |Q |). Furthermore, as shown
in Figure 5, Polar achieves more paths covered on account of our synchronization mechanism
(W (Q )), and explores paths at a higher speed (N (Q )).

Statistics on IEC104. The results of experiments conducted on IEC104 show Polar’s excellence
not only in number of paths covered but also in the speed boost (as shown in Figure 5). The syn-
chronization mechanism sustainedly and effectively provides interesting seeds for fuzzing course,
shown in high value of N (Q ) andW (Q ).

In conclusion, the proposed fuzzing strategy is valuable and effective in practice. It makes a
significant contribution by accelerating fuzzing and exploring more paths within a limited time
budget. As the results on the three protocols show, Polar can accelerate fuzzing 3.6X and 1.5X for
AFL and AFLFast on average, ranging from 1.5X to 12X faster for each path instance. Polar gains
final increases in covered path with 19.9% and 18.8% for AFL and AFLFast on average, ranging
from 0% to 91% for each time slot.

5.4 Previously Unknown Vulnerabilities

In real practice, Polar’s two implementations, Polar-AFL and Polar-AFLFast have already
detected several previously unknown security vulnerabilities in widely used implementations
of libiec61850 and IEC104, 6 of which have been assigned with unique CVE identifiers. Table 5
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Table 5. Vulnerabilities Exposed by Polar

Project Type Advisory Total
heap buffer overflow CVE-2018-18834 , CVE-2018-19185

libiec61850 NULL pointer dereference CVE-2018-18937, CVE-2018-19122 6
SEGV CVE-2018-19093, CVE-2018-19121

stack buffer overflow Bug-2019-0312
IEC104 SEGV Bug-2019-0207, Bug-2019-0307 4

denial of service Bug-2019-0402

summarizes those vulnerabilities that have been confirmed and repaired. The column “Type”
indicates the cause of vulnerabilities, mainly including null pointer dereference, SEGV, heap-based
buffer overflow, stack-based buffer overflow and denial of service. The column “Advisory” shows
vulnerability identifier information. “CVE-xxx” means it is assigned a CVE identifier, while
“bug-xxx-x” means the vulnerability have been confirmed.

The bugs exposed by Polar can dramatically affect the service of devices running those ICS
protocols. Taking the denial of service vulnerability(Bug-2019-0402) of IEC104 in Table 5 as an
example, if this bug is made use of for destructive purposes, the server device will immediately
shut down, causing the whole system to crash.

We present the denial of service vulnerability in IEC104 in detail. We analyzed this vulnerability
with the GNU Project Debugger (gdb) as shown in Listing 4. It is caused by tending to call a unim-
plemented function (function SaveFirmware) in line 1066 (Listing 3) when processing a packet,
which then leads to application crash (segmentation fault). In our experiment, Polar-AFL exposed
this vulnerability 18x faster than AFL and Polar-AFLFast exposed it 4x faster than AFLFast.

In conclusion, Polar achieves faster fuzzing speed and higher path coverage, and is more effec-
tive in real vulnerability detection.

Listing 3. Code Snippet of IEC104

Listing 4. A denial of service vulnerability in IEC104
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Table 6. Comparison between Polar and TaintScope

Comparison Polar TaintScope

Goal of Static
Analysis

Filter funcinfo candidates and
vulnerable operations

Filter checksum-based integrity check
candidates and vulnerable operations

Goal of Taint
Analysis

Verify funcinfo
Verify checksum-based integrity checks and
identify hot bytes for vulnerable operations

Fuzzing Strategy
Add two strategies for function code

aware and one strategy for vulnerable
operations

Add one strategy for vulnerable operations
(hot bytes)

Logic of
Under-test-program

Unchanged Changed

Crash Verification No need Required

Goal of
Instrumentation

Obtain the coverage information of
function code statements and

vulnerable operations

Change the control flow of
under-test-program to bypass integrity

checks

6 RELATED WORK

Protocol Fuzzing. There are some fuzzers that are highly optimized for protocol testing such
as Sulley [1], Defencis, and Peach [30]. However, most of them require format specification of
protocol under testing, which causes significant manpower expense. Also, those generation-based
fuzzers do not easily detect deep bugs in the source code. In contrast, given an ICS protocol to test,
Polar requires no extra format specification of the protocol packet, decreasing the amount of man-
ual work required to test implementations of ICS protocols. It extracts some protocol information
automatically and utilizes it during fuzzing, giving it a wide applicability.

Grammar based fuzzing. Several fuzzing techniques have been proposed based on grammar.
CSmith [42] is a fuzzer designed for C programming language and generates C programs based on
randomly selected production rule in the grammar. LangFuzz [17] leverages ANTLR grammars to
parse previously regression test input to code fragments and save them for recombination during
seed generation.

Symbolic Execution based fuzzing. This technique has been widely applied to optimize
fuzzing tools such as KLEE [4], Driller [27], SAFL [31], and CUTE [24]. Those tools apply symbolic
execution to maximize code coverage by collecting constraints along a program path and gener-
ating inputs that satisfy unexplored path constraints. They are useful for generating valid packets
for protocols with simple format. However, the scalability of this technique cannot be guaranteed
because it can result in path explosion problem and requires strict execution of environmental sup-
port. Hence, the application of symbolic execution remains a challenge for large programs such as
ICS protocols running in an industrial production environment [5].

Taint Analysis based fuzzing. Taint analysis based fuzzers exploit program data-flow fea-
tures by analyzing how the program processes an input during execution. There are also many
fuzzing tools that incorporate this technique. Considering how the data-flow features are used,
those fuzzers can be roughly divided into two categories: (i) Some fuzzers aim to trigger security-
sensitive codes or unexplored branches. For instance, Buzzfuzz [11] is directed for those compo-
nents of input that affect the values in “attack point”. Angora [6] utilizes taint analysis to analyze
which byte offsets in the input affect the predicate of unexplored branches, and then utilize those
information for targeting the unexplored branches. VUzzer [23] applies taint analysis to extract
data-flow features, which allows it to determine where and how to mutate. (ii) There are also
some fuzzers that apply this approach with the objective of detecting some critical points in the
program at a pre-processing stage like Polar. For example, TaintScope [32] uses taint analysis
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to locate checksum-based integrity checks. After obtaining their information, TaintScope injects
instrumentation to the target program at the corresponding points to help bypass those integrity
checks. Therefore, the control flow of program under fuzzing stage differs from the original one.
Then if an input C leads to crash, TaintScope needs to repair checksum fields in C by combined
concrete and symbolic execution and then feed it to the original program to verify its reproducibil-
ity. Polar uses the similar techniques of combined static analysis and taint analysis to locate func-
tion code. However, the main difference between Polar and TaintScope reflects in fuzzing stage.
TaintScope makes modification to the target program while Polar leverages funcinfo to optimize
fuzzing strategy. What’s more, TaintScope needs additional verification to reduce false positives
when crashes are discovered. Actually, Polar can be applied to TaintScope to make further im-
provements in vulnerability detection. The detail comparison between Polar and TaintScope are
listed in Table 6.

7 CONCLUSION

In this paper, we present Polar, a function code aware fuzzing framework for ICS protocol vulner-
ability detection. Based on static code analysis and dynamic taint analysis techniques, Polar can
locate the function code processing statement and some security-sensitive points automatically,
and then utilizes those information to guide the fuzzing process. We augmented AFL and AFLFast
with Polar and evaluated them on three widely used implementations of libmodbus, IEC104 and
libiec61850. Polar-AFL and Polar-AFLFast achieve higher path coverage at a faster speed and
have exposed 10 previously unknown bugs, 6 of which have been assigned with unique CVE iden-
tifiers. Polar is fully automatic and can also be applied to many other fuzzers, such as FairFuzz[19],
for further improvement, especially when the format of protocol packet is unavailable. Currently,
our present implementation of Polar relies on the source code of ICS protocols. Theoretically, it
can be also extended to test binary forms of ICS protocols, and we leave it as our future work.
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